

Biosystematika II

April 25th, 2019

Clément Lafon Placette

Angiosperms dominate the current plant world

Double fertilization in Angiosperms

A seed is supposed to give rise to a new healthy seedling

The 2m:1p endosperm ratio can be disrupted

Cymbidium Fanfare 2x

Cymbidium Fanfare 4x

The endosperm: a genome dosage sensitive tissue

Balanced ploidy

 $2x \times 2x$

Endosperm

Normal endosperm

Maternal excess

 $4x \mathcal{P} \times 2x \mathcal{O}$

Early cellularized Endosperm

Paternal excess

 $2x \mathcal{P} \times 4x \mathcal{O}$

Endosperm with failed cellularization

It's a relative dosage, not absolute. Homo-polyploids have more copies but remain 2m:1p

Parental genomes are not equivalent/they are complementary

Parent-of-origin expression: genomic imprinting

Genomic imprinting is the epigenetic phenomenon by which certain genes are expressed in a parent-of-origin-specific manner

Complementarity/unequivalence of parental genomes

Hybrid seed lethality = reproductive barrier

S. peruvianum

S. chilense

"What is a species and what is not?"

A cockadog (hassciencegonetoofar.com)

"Species are groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups" Ernst Mayr, 1963

Exactly the same story in homoploid hybrid seeds

A. lyrata, 2x

A. arenosa, 2x

Hybrid

A. arenosa, 2x

X

A. lyrata, 2x

Hybrid

Lafon-Placette et al., 2018

The endosperm requires a specific relative dosage between maternal and paternal genomes (2:1)

	I	I					
	♀ 2 <i>x</i> × ♂ 2 <i>x</i>	$94x \times 02x$	\bigcirc 2x Aa \times \bigcirc 2x Al	\bigcirc 2x \times \bigcirc 4x \bigcirc 2x AI \times \bigcirc 2x Aa			
Genome ratio	2m:1p	4m:1p	2m:1p	2m:2p	2m:1p		
Genome balance	Normal	♀ excess	Normal	♂ excess	Normal		
			G X	(XB)			
	Normal endosperm	•	ellularized osperm	•	erm with ularization		

Reciprocal defects in interploid seeds within the same species = homoploid hybrid seeds!

A quantitative imbalance in interspecific (homoploid) hybrid seeds as well?

Tiwari et al., 2010

Increasing the ploidy of one parent rescues the hybrid seed: a quantitative rather than qualitative barrier

chromosomes doubling (drug induced, colchicine)

C. rubella $(4x) \times C$. grandiflora (2x)

C. rubella × C. grandiflora hybrid seeds rescued!

The Endosperm Balance Number (EBN) hypothesis

Johnston et al. 1980

X

X

A problem of genome dosage between parental species

Natural tetraploidization

Genome dosage imbalance \rightarrow hybrid seed lethality: a widespread mechanism across angiosperms

Why do some species have higher EBN than others?

The "vendange en vert"

Unripe fruits, high acidity

Fruits grow bigger, higher sugar content

Competition between fruits/seeds for limited maternal resources...

Siblings from different males = competition for maternal resources

The parental conflict theory A tug-of-war

The Weak Inbreeder/Strong Outbreeder theory

EBN imbalance → endosperm-based hybrid seed lethality

Higher EBN in outbreeders: a clear trend in Solanum

Species	EBN	Ploidy	EBN in 2x	Mating type	Species	EBN	Ploidy	EBN in 2x	Mating type
Solanum acaule	1	2x	1	Self- compatible	S. boliviense	2	2x	2	Self-incompat.
S. brevidens	1	2x	1	SC	S. bulbocastanum	1	2x	1	SI
S. demissum	4	6x	1.33	SC	S. cardiophyllum	1	2x	1	SI
S. etuberosum	1	2x	1	SC	S. chacoense	2	2x	2	SI
S. fernandezianum	1	2x	1	SC	S. chomatophilum	2	2x	2	SI
S. iopetalum	4	6x	1.33	SC	S. commersonii	1	2x	1	SI
S. palustre	1	2x	1	SC	S. gourlayi	4	4x	2	SI
S. polyadenium	1	2x	1	SC	S. infundibuliforme	2	2x	2	SI
S. stoloniferum	2	4x	1	SC	S. laxissimum	2	2x	2	SI
S. verrucosum	2	2x	2	SC	S. megistacrolobum	2	2x	2	SI
S. moscopanum	4	6x	1.33	SC	S. oplocense	2	2x	2	SI
S. andreanum	2	2x	2	SC	S. pinnatisectum	1	2x	1	SI
S. hougasii	4	6x	1.33	SC	S. raphanifolium	2	2x	2	SI
S. guerreroense	4	6x	1.33	SC	S. sparsipilum	2	2x	2	SI
S. hjertingii	2	4x	1	SC	S. stenotomum	2	2x	2	SI
S. oxycarpum	2	4x	1	SC	S. tuberosum	4	4x	2	SI
S. agrimonifolium	2	4x	1	SC	S. stenophyllidium	1	2x	1	SI
S. colombianum	2	4x	1	SC	S. santolallae	2	2x	2	SI

Average EBN: 1.2 Average EBN: 1.72**

The Capsella genus

Seems like a continuous phenomenon

Mixed-mating populations, with a range of outcrossing rates

Not only outbreeder vs inbreeder

×

Lafon-Placette et al., 2018

The Endosperm Balance Number (EBN) hypothesis

Johnston et al. 1980

X

X

Solanum brevidens, 2x

Is genomic imprinting involved?

Genomic imprinting is the epigenetic phenomenon by which certain genes are expressed in a parent-of-origin-specific manner

