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Transforms 1

Introduction

The Programming Guide provides you with complete descriptions of SigmaPlot�s 
powerful math, data manipulation, regression, and curve fitting features. It also 
describes how to use SigmaPlot�s Interactive Development Environment (IDE) and 
Macro Recorder to automate and customize SigmaPlot tasks.

Transforms 0

Transforms are sets of equations that manipulate and calculate data. Math transforms 
apply math functions to existing data and also generate serial and random data. To 
perform a transform, you enter variables and standard arithmetic and logic operators 
into a transform dialog. Your equations can specify that a transform access data from a 
worksheet as well as save equation results to a worksheet.

Transforms can be saved as independent .XFM files for later opening or 
modification. Because transforms are saved as plain text (ASCII) files, they can be 
created and edited using any word processor that can edit and save text files.

The transform chapters describe the use and structure of transforms, followed by a 
brief tutorial, reference sections on transform operators and functions, and finally a 
list and description of the sample transform files and graphs included with 
SigmaPlot.

Regressions 0

The SigmaPlot Regression Wizard replaces the older curve fitter with a new interface 
and over one hundred new equations. The major new features of this interface 
include:

➤ a graphical interface rather than text code

➤ a library of over 100 built-in equations in twelve different categories

➤ graphical examples of the curves and equations for built-in equations

1
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2 Automation

➤ automatic initial parameter determination�no coding is required in most cases

➤ selection of variables directly from either worksheet columns or graph curves

➤ full statistical report generation

➤ automatic curve plotting to existing or new graphs

➤ new regression equation documents for the notebook

➤ new text report documents for the notebook

The Regression Wizard chapters describe how to use these features.

The Curve Fitter The Regression Wizard uses the curve fitter to fit user-defined linear equations to 
data. The curve fitter modifies the parameters (coefficients) of your equation, and 
finds the parameters which cause the equation to most closely fit your data.

You can specify up to 25 equation parameters and ten independent equation 
variables. When you enter your equation, you can specify up to 25 parameter 
constraints, which limit the search area when the curve fitter checks for parameter 
values.

The curve fitter can also use weighted least squares for greater accuracy.

User-defined equations can be saved to notebooks or regression libraries and selected 
for later use or modification.

Automation 0

SigmaPlot OLE Automation technology provides you with a wide range of 
possibilities for automating frequently-performed tasks, using macros and user-
defined features.

SigmaPlot�s Macro Recorder lets you record is a set of procedures and then run them 
automatically with a single command. Most of the operations that you perform in 
SigmaPlot can be recorded. 

The Macro Window provides a fully-featured programming environment that uses 
SigmaPlot Basic as the core programming language. If you are familiar with Microsoft 
Visual Basic, most of what you know will apply as you use SigmaPlot�s macro 
language. 
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Using Transforms

Transforms are math functions and equations that generate and are applied to 
worksheet data. Transforms provide extremely flexible data manipulation, allowing 
powerful mathematical calculations to be performed on specific sets of your data.

Using the Transform Dialog Box 0

To begin a transform, choose the Transforms menu User Defined command or press 
F10. The User-Defined Transform dialog box appears. 

Creating a Transform The first step to transform worksheet data is to enter the desired equations in the edit 
box. If no previously entered transform equations exist, the edit box is empty: 
otherwise, the last transform entered appears.

Select the edit box to begin entering transform instructions. As you enter text into 
the transform edit box, the box scrolls down to accommodate additional lines. 

Up to 100 lines of equations can be entered. Equations can be entered on separate 
lines or on the same line.

Figure 2�1
The User-Defined

Transform Dialog Box

2
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4 Transform Syntax and Structure

Once you have completed the transform, you can run it by selecting Execute.

Transform Files Transforms can be saved as independent transform files. The default extension is 
.XFM. Transform files are plain text files that can also be edited with any word 
processing program.

Use the New, Open, Save, and Save As options in the User-Defined Transform dialog 
to begin new transforms, open existing transforms, save the contents of the current 
edit box to a transform file, and save an existing transform file to a different file 
name. 

The last transform you entered, opened, or imported always appears in the edit 
window when you open the User-Defined Transform dialog. To permanently save a 
transform, you must use the Save, or Save As options.

Transform Syntax and Structure 0

Use standard syntax and equations when defining user-defined transforms in 
SigmaPlot or SigmaStat. This section discusses the basics and the details for entering 
transform equations. 

Transform Syntax Transforms are entered as equations with the results placed to the left of the equal 
sign (=) and the calculation placed to the right of the equal sign. Results can be 
defined as either variables (which can be used in other equations), or as the worksheet 
column or cells where results are to be placed. 

Entering Transforms To type an equation in the transform edit box, click in the edit box and begin typing. 
When you complete a line, press Enter to move the cursor to the first position on the 
next line. 

Figure 2�2
Typing Equations

into the Edit Window
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You can leave spaces between equation elements: x = a+b is the same as
x = a + b. However, you may find it necessary to conserve space by omitting spaces. 
Blank lines are ignored so that you can use them to separate or group equations for 
easier reading. 

If the equation requires more than one line, you may want to begin the second and 
any subsequent lines indented a couple of spaces (press the space bar before typing 
the line). Although this is not necessary, indenting helps distinguish a continuing 
equation from a new one.

Σ You can resize the transform dialog to enlarge the edit box. You can press Ctrl+X, 
Ctrl+C, and Ctrl+V to cut, copy, and paste text in the edit window.

Transforms are limited to a maximum of 100 lines. Note that you can enter more 
than one transform statement on a line; however, this is only recommended if space 
is a premium.

Σ Use only parentheses to enclose expressions. Curly brackets and square brackets are 
reserved for other uses.

Commenting
on Equations

To enter a comment, type an apostrophe (�) or a semicolon (;), then type the 
comment to the right of the apostrophe or semicolon. If the comment requires more 
than one line, repeat the apostrophe or semicolon on each line before continuing the 
comment.

Sequence
of Expression

SigmaPlot and SigmaStat generally solve equations regardless of their sequence in the 
transform edit box. However, the col function (which returns the values in a 
worksheet column) depends on the sequence of the equations, as shown in the 
following example.

Example: The sequence of the equations:

col(1)=col(4)^alpha
col(2)=col(1)*theta
must occur as shown. The second equation depends on the data produced by the 
first. Reversing the order produces different results. To avoid this sequence problem, 
assign variables to the results of the computation, then equate the variables to 
columns:

x=col(4)
y=x^alpha
z=y∗theta
col(1)=y
col(2)=z

The sequence of the equations is now unimportant.
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Transform Components 0

Transform equations consist of variables and functions. Operators are used to define 
variables or apply functions to scalars and ranges. A scalar is a single worksheet cell, 
number, missing value, or text string. A range is a worksheet column or group of 
scalars.

Variables You can define variables for use in other equations within a transform. Variable 
definition uses the following form

variable = expression

Variable names must begin with a letter: after that, they can include any letter or 
number, or the underscore character (_). Variable names are case sensitive�an �A� is 
not the equivalent of an �a.� Once a variable has been defined by means of an 
expression, that variable cannot be redefined within the same transform.

Functions A function is similar to a variable, except that it refers to a general expression, not a 
specific one, and thus requires arguments. The syntax for a function declaration is

function(argument 1,argument 2,...) = expression

where function is the name of the function, and one or more argument names are 
enclosed in parentheses. Function and argument names must follow the same rules as 
variable names.

User-Defined Functions Frequently used functions can be copied to the Clipboard 
and pasted into the transform window.

Constructs Transform constructs are special structures that allow more complex procedures than 
functions. Constructs begin with an opening condition statement, followed by one 
or more transform equations, and end with a closing statement. The available 
constructs are for loops and if...then...else statements.

Operators A complete set of arithmetic, relational, and logic operators are provided. Arithmetic 
operators perform simple math between numbers. Relational operators define limits 
and conditions between numbers, variables, and equations. Logic operators set 
simple conditions for if statements. For a list of the operators and their functions, see 
Chapter , �Transform Operators�.

Numbers Numbers can be entered as integers, in floating point style, or in scientific notation. 
All numbers are stored with 15 figures of significance. Use a minus sign in front of 
the number to signify a negative value.
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Missing values, represented in the worksheet as a pair of dashes, are considered non-
numeric. All arithmetic operations which include a missing value result in another 
missing value.

To generate a missing value, divide zero by zero

Example: If you define: 

missing = 0/0

the operation: 

size({1,2,3,missing})

returns a value of 4.0. (The size function returns the number of elements in a range, 
including labels and missing values.)

The transform language does not recognize two successive dashes; for example, the 
string {1,2,3,--} is not recognized as a valid range. Dashes are used to represent 
missing values in the worksheet only.

Strings, such as text labels placed in worksheet cells, are also non-numeric 
information. To define a text string in a transform, enclose it with double quotation 
marks.

As with missing values, strings may not be operated upon, but are propagated 
through an operation. The exception is for relational operators, which make a lexical 
comparison of the strings, and return true or false results accordingly.

Figure 2�3
Examples of the Transform

Equation Elements Typed into
the Transform Window
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8 Transform Components

Scalars and Ranges The transform language recognizes two kinds of elements: scalars and ranges. A scalar 
is any single number, string, or missing value. Anything that can be placed in a single 
worksheet cell is a scalar.

A range (sometimes called a vector or list) is a one-dimensional array of one or more 
scalars. Columns in the worksheet are considered ranges.

Ranges can also be defined using curly bracket ( {}) notation. The range elements are 
listed in sequence inside the brackets, separated by commas. Most functions which 
accept scalars also accept ranges, unless specifically restricted. Typically, whatever a 
function does with a scalar, it does repeatedly for each entry in a range. A single 
function can operate on either a cell or an entire column.

Example 1: The entry:

{1,2,3,4,5}

produces a range of five values, from 1 through 5.

Example 2: The operation:

{col(1), col(2)}

concatenates columns 1 and 2 into a single range. Note that elements constituting a 
range need not be of the same type, i.e., numbers, labels and missing values.

Example 3: The entry:

{x,col(4)∗3,1,sin(col(3))}

also produces a range.

Array References Individual scalars can be accessed within a range by means of the square bracket ([]) 
constructor notation. If the bracket notation encloses a range, each entry in the 
enclosed range is used to access a scalar, resulting in a new range with the elements 
rearranged.

Example: For the range:

x = {1.4,3.7,3.3,4.8}

the notation:

x[3]

returns 3.3, the third element in the range. The notation:

x[{4,1,2}]
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produces the range {4.8,1.4,3.7}. The constructor notation is not restricted to 
variables: any expression that produces a range can use this notation.

Example: The operation:

col(3)[2]

produces the same result as col(3,2,2), or cell(3,2). The notation:

{2,4,6,8}[3]

produces 6. If the value enclosed in the square brackets is also a range, a range 
consisting of the specified values is produced.

Example: The operation:

col(1)[{1,3,5}]

produces the first, third, and fifth elements of column 1. 

Figure 2�4
Range and Array Reference

Operations Typed into
the User Defined

Transform Window
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Notes 0
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Transform Tutorial

The following tutorial is designed to familiarize you with some basic transform 
equation principles. You will enter transform data into a worksheet and generate a 
2D graph.

Starting a Transform 0

To begin a transform:

1. Click the New Notebook  button, or choose the File menu New command 
and select Notebook. An empty worksheet appears.

2. Choose the Transforms menu User-Defined command. The User-Defined 
Transform dialog appears. If necessary, select the New option to clear the edit 
window and begin a new session.

3. Defining a Variable Click the upper left corner of the edit window and type:

t=data(−10,11,1.5)

4. Add a few spaces, then type the comment:

'generates serial data

The data function is used to generate serial data from a specified start and stop, 
using an optional increment.

5. Press Enter to move to the next line, then type:

col(1)=t 'put t into column 1

This places the variable t into column 1 of the data worksheet.

6. Press Enter, then type:

3
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12 Starting a Transform

cell(2,1) = "Results:" 'enclose strings in quotes 

This places the label �Results:� in row one of column 2. Text strings must be 
enclosed in quotation marks.

7. Defining a Function Press Enter, then type:

f(x)=2∗x^3−7∗x^2

Press Enter, add a couple of spaces, then type:

+9∗x−5

If you want an equation to use more than one line, start each additional line 
with a blank space or two to distinguish it from a new equation.

8. Press Enter, then type:

y=f(t)

This variable declaration uses the function f and variable t declared in the 
previous equations.

9. Add a few spaces, then type:

put y into col(3) 

This places the results of the preceding equation (which defines y) in column 3 
of the worksheet.

Figure 3�1
The Edit Window with

 All the Transform
Equations Entered
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Note that you can also collapse the last two lines into one equation:

col(3)=f(t)

Select Execute. If you have entered all the transform equations correctly, the 
data will appear as shown in Figure 3�2. 

Saving and Executing Transforms 0

After entering the transform equations, save the transform to a file, then execute the 
transform.

1. Select the Save option, and specify a file name and destination for the file. The 
default extension for transform files is .XFM. 

Saved transforms can be opened with the Transform dialog Open button.

2. Select Execute. If you have entered all the transform equations correctly, you 
should generate the data shown in Figure 3�2.

Graphing the Transform Results 0

Once the transform is executed and the results are placed in the worksheet, you then 
treat the results like any other worksheet data.

1. Select a scatter graph from the graph toolbar and select a simple scatter graph. 

Figure 3�2
The Data Generated by
the Transform Tutorial
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You can also choose the Graph menu Create Graph command, select Scatter 
Plot then click Next and select Simple Scatter.

2. Select XY Pair as the Data Format, then click Next. Select column 1 as your X 
column and column 3 as your Y column, then click Finish. 

A Scatter Plot graph appears. The data in column 1 is plotted along the X axis 
and the data in column 3 is plotted along the Y axis.  

Recoding Example 0

This example illustrates a simple recoding transform. 

1. Choose the Transforms menu User-Defined command to open the User-
Defined Transform dialog. If desired, press Save to save the existing transform to 
a file. Press New to begin a new transform.

Figure 3�3
A Graph

of Plotting the
Transform Tutorial

Data as a Scatter Plot
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2. Click the upper left corner of the edit window and type:

x = random(15,2,0,7)

This creates uniformly random numbers distributed between 0 and 7, using 2 
as a seed. However, the numbers generated have fifteen significant digits. To 
round off the numbers to two decimal places, modify this function to read:

x = round(random,15,2,0,7),2)

3. Press Enter, then type:

col(1) = x

to place the random numbers in column 1.

4. Press Enter and type:

col(2,1) = "Recoded "

Note the space between the d and the quotation mark ( "). All characters, 
including space characters, within quotes are entered into cells as part of the 
label.

Press Enter, then type:

col(2,2) = "Variable:"

Figure 3�4
Entering the Recoding

Transform Example
into the User-Defined

Transform Edit Window
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5. To create the code data, press Enter, then type:

col(3) = if(x<2,"small",

Press Enter, add a couple of spaces, then type:

if(x >=2 and x<5, "medium","large"))

If you want an equation to use more than one line, start each additional line 
with a blank space or two to distinguish it from a new equation. 

6. Select Execute. If you have entered all the transform equations correctly, the data 
will appear as shown in Figure 3�5.  

7. You can save your new data with the Save command from the File menu.

Figure 3�5
Results of the Recoding

Example Transform
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Transform Operators

Transforms use operators to define variables and apply functions. A complete set of 
arithmetic, relational, and logical operators are provided.

Order of Operation 0

The order of precedence is consistent with P.E.M.A. (Parentheses, Exponentiation, 
Multiplication, and Addition) and proceeds as follows, except that parentheses 
override any other rule.

➤ Exponentiation, associating from right to left

➤ Unary minus

➤ Multiplication and division, associating from left to right

➤ Addition and subtraction, associating from left to right

➤ Relational operators

➤ Logical negation

➤ Logical and, associating from left to right

➤ Logical or, associating from left to right 

This list permits complicated expressions to be written without requiring too many 
parentheses.

Example: The statement:

a<10 and b<5

groups to (a<10) and (b<5), not to (a<(10 and b))<5. 

Σ Note that only parentheses can group terms for processing. Curly and square brackets 
are reserved for other uses. 

 

4



Transform Operators

18 Operations on Ranges

Operations on Ranges 0

The standard arithmetic operators�addition, subtraction, multiplication, division, 
and exponentiation�follow basic rules when used with scalars. For operations 
involving two ranges corresponding entries are added, subtracted, etc., resulting in a 
range representing the sums, differences, etc., of the two ranges.

If one range is shorter than the other, the operation continues to the length of the 
longer range, and missing value symbols are used where the shorter range ends.

For operations involving a range and a scalar, the scalar is used against each entry in 
the range. 

Example: The operation:

col(4)∗2

produces a range of values, with each entry twice the value of the corresponding value 
in column 4.

Arithmetic Operators 0

Arithmetic operators perform arithmetic between a scalar or range and return the 
result.

+ Add
− Subtract (also signifies unary minus)
∗ Multiply

Figure 4�1
Examples of

Transform Operators
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/ Divide
^ or ∗∗ Exponentiate

Multiplication must be explicitly noted with the asterisk. Adjacent parenthetical 
terms such as (a+b) (c−4) are not automatically multiplied.  

Relational Operators 0

Relational operators specify the relation between variables and scalars, ranges or 
equations, or between user-defined functions and equations, establishing definitions, 
limits and/or conditions.

= or .EQ. Equal to
> or .GT. Greater than
>= or .GE. Greater than or equal to
< or .LT. Less than
<= or .LE. Less than or equal to
<>,!=, #, or .NE. Not equal to

Figure 4�2
Arithmetic

Operator Examples
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The alphabetic characters can be entered in upper or lower case.  

Logical Operators 0

Logical operators are used to set the conditions for if function statements.

and, & Intersection
or, | Union
not, ∼ Negation

Figure 4�3
Relational and Logical

Operator Examples
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Transform Function Reference

SigmaPlot provides many predefined functions, including arithmetic, statistical, 
trigonometric, and number-generating functions. In addition, you can define 
functions of your own.

Function Arguments 0

Function arguments are placed in parentheses following the function name, 
separated by commas. Arguments must be typed in the sequence shown for each 
function.

You must provide the required arguments for each function first, followed by any 
optional arguments desired. Any omitted optional arguments are set to the default 
value. Optional arguments are always omitted from right to left. If only one 
argument is omitted, it will be the last argument. If two are omitted, the last two 
arguments are set to the default value.

You can use a missing value (i.e., 0/0) as a placeholder to omit an argument.

Example: The col function has three arguments: column, top, and bottom. Therefore, 
the syntax for the col function is:

col(column,top,bottom)

The column number argument is required, but the first (top) and last (bottom) rows 
are optional, defaulting to row 1 as the first row and the last row with data for the last 
row.

col(2) returns the entirety of column 2.
col(2,5) returns column 2 from row 5 to the end of the column.
col(2,5,100) returns column 2 from row 5 to row 100.
col(2,0/0,50) returns column 2 from row 1 to the 50th row in the column.

5
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Transform Function Descriptions 0

The following list groups transforms by function type. It is followed by an 
alphabetical reference containing complete descriptions of all transform functions 
and their syntax, with examples.

 Worksheet
Functions

These worksheet functions are used to specify cells and columns from the worksheet, 
either to read data from the worksheet for transformation, or to specify a destination 
for transform results.

Data Manipulation
Functions

The data manipulation functions are used to generate non-random data, and to 
sample, select, and sort data.

Function Description

block The block function returns a specified block of cells from 
the worksheet.

blockheight, block-
width

The blockheight and blockwidth functions return a speci-
fied block of cells or block dimension from the worksheet.

cell The cell function returns a specific cell from the worksheet.

col The col function returns a worksheet column or portion of 
a column.

put into The put into function places variable or equation results in 
a worksheet column.

subblock The subblock function returns a specified block of cells 
from within another block.

Function Description

data The data function generates serial data.

if The if function conditionally selects between two data sets.

nth The nth function returns an incremental sampling of data.

sort The sort function rearranges data in ascending order.
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Trigonometric
Functions

SigmaPlot and SigmaStat provide a complete set of trigonometric functions..

Numeric Functions The numeric functions perform a specific type of calculation on a number or range 
of numbers and returns the appropriate results.

Range Functions The following functions give information on ranges. 

Function Description

arccos, arcsin, arctan These functions return the arccosine, arcsine, and arctan-
gent of the specified argument.

cos, sin, tan These functions return the cosine, sine, and tangent of the 
specified argument.

cosh, sinh, tanh These functions return the hyperbolic cosine, sine, and tan-
gent of the specified argument.

Function Description

abs The abs function returns the absolute value.

exp The exp function returns the values for e raised to the speci-
fied numbers.

factorial The factorial function returns the factorial for each specified 
number.

mod The mod function returns the modulus, or remainder of 
division, for specified numerators and divisors.

ln The ln function returns the natural logarithm for the 
specified numbers.

log The log function returns the base 10 logarithm for 
the specified numbers.

sqrt The sqrt function returns the square root for the specified 
numbers.

Function Description

count The count function returns the number of numeric values 
in a range.

missing The missing function returns the number of missing values 
and text strings in a range.
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Accumulation
Functions The accumulation functions return values equal to the accumulated operation of the 

function. 

Random Generation
Functions

The two �random� number generating functions can be used to create a series of 
normally or uniformly distributed numbers. 

Precision Functions The precision functions are used to convert numbers to whole numbers or to round 
off numbers. 

size The size function returns the number of data points in a 
range, including all numbers, missing values, and text 
strings.

Function Description

Function Description

diff The diff function returns the differences of the numbers in 
a range.

sum The sum function returns the cumulative sum of a range of 
numbers.

total The total function returns the value of the total sum of a 
range.

Function Description

gaussian The gaussian function is used to generate a series of nor-
mally (Gaussian or �bell� shaped) distributed numbers with 
a specified mean and standard deviation.

random The random function is used to generate a series of uni-
formly distributed numbers within a specified range.

Function Description

int The int function converts numbers to integers.

prec The prec function rounds numbers off to a specified num-
ber of significant digits.

round The round function rounds numbers off to a specified 
number of decimal places.
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Statistical Functions The statistical functions perform statistical calculations on a range or ranges of 
numbers.

Area and Distance
Functions

These functions can be used to calculate the areas and distances specified by X,Y 
coordinates. Units are based on the units used for X and Y.

Curve Fitting
Functions

These functions are designed to be used in conjunction with SigmaPlot�s nonlinear 
curve fitter, to allow automatic determination of initial equation parameter estimates 
from the source data.

Function Description

avg The avg function calculates the averages of corresponding 
numbers across ranges. It can be used to calculate the aver-
age across rows for worksheet columns.

max, min The max function returns the largest value in a range; the 
min function returns the smallest value.

mean The mean function calculates the mean of a range.

runavg The runavg function produces a range of running averages.

stddev The stddev function returns the standard deviation of a 
range.

stderr The stderr function calculates the standard error of a range. 

Function Description

area The area function finds the area of a polygon described in 
X,Y coordinates.

distance The distance function calculates the distance of a line whose 
segments are described in X,Y coordinates.

partdist The partdist function calculates the distances from an initial 
X,Y coordinate to successive X,Y coordinates in a cumula-
tive fashion.
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You can use these functions to develop your own parameter determination function 
by using the functions provided with the Standard Regression Equations library 
provided with SigmaPlot.

Function Description

ape This function is used for the polynomials, rational polyno-
mials and other functions which can be expressed as linear 
functions of the parameters. A linear least squares estima-
tion procedure is used to obtain the parameter estimates.

dsinp This function returns an estimate of the phase in radians of 
damped sine functions.

fwhm This function returns the x width of a peak at half the peak�s 
maximum value for peak shaped functions.

inv The inv function generates the inverse matrix of an invert-
ible square matrix provided as a block.

lowess The lowess algorithm is used to smooth noisy data. �Low-
ess� means locally weighted regression. Each point along the 
smooth curve is obtained from a regression of data points 
close to the curve point with the closest points more heavily 
weighted.

lowpass The lowpass function returns smoothed y values from 
ranges of x and y variables, using an optional user-defined 
smoothing factor that uses FFT and IFFT.

sinp This function returns an estimate of the phase in radians of 
sinusoidal functions.

x25 This function returns the x value for the y value 25% of the 
distance from the minimum to the maximum of smoothed 
data for sigmoidal shaped functions.

x50 This function returns the x value for the y value 50% of the 
distance from the minimum to the maximum of smoothed 
data for sigmoidal shaped functions.

x75 This function returns the x value for the y value 75% of the 
distance from the minimum to the maximum of smoothed 
data for sigmoidal shaped functions.

xatymax This function returns the x value for the maximum y in the 
range of y coordinates for peak shaped functions.

xwtr This function returns x75-x25 for sigmoidal shaped func-
tions.
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Miscellaneous
Functions

These functions are specialized functions which perform a variety of operations..

Special Constructs Transform constructs are special structures that allow more complex procedures than 
functions. 

Fast Fourier
Transform Functions

These functions are used to remove noise from and smooth data using frequency-
based filtering. 

Function Description

choose The choose function is the mathematical �n choose r� func-
tion.

histogram The histogram function generates a histogram from a range 
or column of data.

interpolate The interpolate function performs linear interpolation 
between X,Y coordinates.

polynomial The polynomial function returns results for specified inde-
pendent variables for a specified polynomial equation.

rgbcolor The rgbcolor(r,g,b) color function takes arguments r,g, and 
b between 0 and 255 and returns color to cells in the work-
sheet. 

Function Description

for The for statement is a looping construct used for iterative 
processing.

if...then...else The if...then...else construct proceeds along one of two pos-
sible series of procedures based on the results of a specified 
condition.

Function Description

fft The fft function finds the frequency domain representation 
of your data.

invfft The invfft function takes the inverse fft of the data pro-
duced by the fft to restore the data to its new filtered form.

real The real function strips the real numbers out of a range of 
complex numbers.
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abs

Summary The abs function returns the absolute value for each number in the specified range.

Syntax abs(numbers)

The numbers argument can be a scalar or range of numbers. Any missing value or text 
string contained within a range is ignored and returned as the string or missing value.

Example The operation col(2) = abs(col(1)) places the absolute values of the data in column 1 
in column 2.

ape

Summary The ape function is used for the polynomials, rational polynomials and other 
functions which can be expressed as linear functions of the parameters. A linear least 
squares estimation procedure is used to obtain the parameter estimates. The ape 
function is used to automatically generate the initial parameter estimates for 
SigmaPlot�s nonlinear curve fitter from the equation provided.

Syntax ape(x range,y range,n,m,s,f)

The x range and y range arguments specify the independent and dependent variables, 
or functions of them (e.g., ln(x)). Any missing value or text string contained within 
one of the ranges is ignored and will not be treated as a data point. x range and y range 
must be the same size

The n argument specifies the order of the numerator of the equation. The m 
argument specifies the order of the denominator of the equation. n and m must be 
greater than or equal to 0 (  ). If m is greater than 0 then n must be less than 
or equal to m (if , ). 

img The img function strips the imaginary numbers out of a 
range of complex numbers.

complex The complex function converts a block of real and/or imag-
inary numbers into a range of complex numbers.

mulcpx The mulcpx function multiplies two ranges of complex 
numbers together.

invcpx The invcpx takes the reciprocal of a range of complex num-
bers.

Function Description

n m 0≥,
m 0> n m≤
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The s argument specifies whether or not a constant is used. s=0 specifies no constant 
term y0 in the numerator, s=1 specifies a constant term y0 in the numerator. s must be 
either 0 or 1. If n = 0, s cannot be 0 (there must be a constant). 

The number of valid data points must be greater than or equal to .

The optional f argument defines the amount of Lowess smoothing, and corresponds 
to the fraction of data points used for each regression. f must be greater than or equal 
to 0 and less than or equal to 1. . If f is omitted, no smoothing is used.

Example For x = {0,1,2}, y={0,1,4}, the operation col(1)=ape(x,y,1,1,1,0.5] ) places the 3 
parameter estimates for the equation

as the values {5.32907052e-15, 0.66666667, -0.33333333} in column 1.

arccos

Summary This function returns the inverse of the corresponding trigonometric function.

Syntax arccos(numbers)

The numbers argument can be a scalar or range. You can also use the abbreviated 
function name acos.

The values for the numbers argument must be within -1 and 1, inclusive. Results are 
returned in degrees, radians, or grads, depending on the Trigonometric Units selected 
in the User-Defined Transform dialog. Any missing value or text string contained 
within a range is ignored and returned as the string or missing value.

The function domain (in radians) is

Example The operation col(2) = acos(col(1)) places the arccosine of all column 1 data points 
in column 2.

Related Functions cos, sin, tan
arcsin, arctan

arcsin

Summary This function returns the inverse of the corresponding trigonometric function. 

n m s+ +

0 f 1≤ ≤

f x( ) a bx+
1 cx+
--------------=

arccos 0toπ
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Syntax arcsin(numbers)

The numbers argument can be a scalar or range. You can also use the abbreviated 
function name asin.

The values for the numbers argument must be within -1 and 1, inclusive. Results are 
returned in degrees, radians, or grads, depending on the Trigonometric Units selected 
in the User-Defined Transform dialog. Any missing value or text string contained 
within a range is ignored and returned as the string or missing value.

The function domain (in radians) is:

Example The operation col(2) = asin(col(1)) places the arcsine of all column 1 data points in 
column 2.

Related Functions cos, sin, tan
arccos, arctan

arctan

Summary This function returns the inverse of the corresponding trigonometric function.

Syntax arctan(numbers)

The numbers argument can be a scalar or range. You can also use the abbreviated 
function name atan.

The numbers argument can be any value. Results are returned in degrees, radians, or 
grads, depending on the Trigonometric Units selected in the User-Defined 
Transform dialog.

The function domain (in radians) is:

Example The operation col(2) = atan(col(1)) places the arctangent of all column 1 data points 
in column 2.

Related Functions cos, sin, tan
arccos, arcsin

arcsin π
2
--- to π

2
---–

arctan
π
2
--- to

π
2
---–
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area

Summary The area function returns the area of a simple polygon. The outline of the polygon is 
formed by the xy pairs specified in an x range and a y range. 

The list of points does not need to be closed. If the last xy pair does not equal the first 
xy pair, the polygon is closed from the last xy pair to the first.

The area function only works with simple non-overlapping polygons. If line 
segments in the polygon cross, the overlapping portion is considered a negative area, 
and results are unpredictable.

Syntax area(x range,y range)

The x range argument contains the x coordinates, and the y range argument contains 
the x coordinates. Corresponding values in these ranges form xy pairs.

If the ranges are uneven in size, excess x or y points are ignored.

Example For the ranges x = {0,1,1,0} and y = {0,0,1,1}, the operation area (x,y) returns a 
value of 1. The X and Y coordinates provided describe a square of 1 unit.

Related Functions dist

avg

Summary The avg function averages the numbers across corresponding ranges, instead of 
within ranges. The resulting range is the row-wise average of the range arguments. 
Unlike the mean function, avg returns a range, not a scalar.

The avg function calculates the arithmetic mean, defined as:

The avg function can be used to calculate averages of worksheet data across rows 
rather than within columns.

Syntax avg({x1,x 2...},{y1,y2...},{z1,z2...})

The x1, y1, and z1 are corresponding numbers within ranges. Any missing value or 
text string contained within a range returns the string or missing value as the result.

x 1
n---= xi

i 1=

n

∑
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Example The operation avg({1,2,3},{3,4,5}) returns {2,3,4}. 1 from the first range is 
averaged with 3 from the second range, 2 is averaged with 4, and 3 is averaged with 
5. The result is returned as a range.

Related Functions mean

block

Summary The block function returns a block of cells from the worksheet, using a range 
specified by the upper left and lower right cell row and column coordinates.

Syntax block(column 1,row 1,column 2,row 2 )

The column 1 and row 1 arguments are the coordinates for the upper left cell of the 
block; the column 2 and row 2 arguments are the coordinates for the lower right cell 
of the block. All values within this range are returned. Operations performed on a 
block always return a block. 

If column 2 and row 2 are omitted, then the last row and/or column is assumed to be 
the last row and column of the data in the worksheet. If you are equating a block to 
another block, then the last row and/or column is assumed to be the last row and 
column of the equated block (see the following example).

All column and row arguments must be scalar (not ranges). To use a column title for 
the column argument, enclose the column title in quotes; block uses the column in 
the worksheet whose title matches the string. 

Example The command block(5,1) = −block(1,1,3,24) reverses the sign for the values in the 
range from cell (1,1) to cell (3,24) and places them in a block beginning in cell (5,1).

Related Functions blockheight, blockwidth
subblock

blockheight, blockwidth

Summary The blockheight and blockwidth functions return the number of rows or columns, 
respectively, of a defined block of cells from the worksheet.

Syntax blockheight(block) blockwidth(block)

The block argument can be a variable defined as a block, or a block function 
statement.

Example For the statement x = block(2,1,12,10)
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The operation cell(1,1) = blockheight(x) places the number 10 in column 1, row 1 of 
the worksheet

The operation cell(1,2) = blockwidth(x) places the number 11 in column 1, row 2 of 
the worksheet.

Related Functions block
subblock

cell

Summary The cell function returns the contents of a cell in the worksheet, and can specify a cell 
destination for transform results. 

Syntax cell (column,row)

Both column and row arguments must be scalar (not ranges). To use a column title 
for the column argument, enclose the column title in quotes; cell uses the column in 
the worksheet whose title matches the string. 

Data placed in a cell inserts or overwrites according to the current insert mode.

Example 1 For the worksheet shown in Figure 5�1, both the operations cell(2,3) and 
cell("EXP2",3) return a value of 0.5.

Example 2 For the worksheet shown in Figure 5�1, the operation 
cell(3,3) = 64^cell(2,3) 
raises 64 to the power of the number in cell (2,3), and places the result in 
cell (3,3). 

Related Functions col 

Figure 5�1
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choose

Summary The choose function determines the number of ways of choosing r objects from n 
distinct objects without regard to order.

Syntax choose(n,r)

For the arguments n and r, r < n and �n choose r� is defined as:

Examples To create a function for the binomial distribution, enter the equation:

binomial(p,n,r) = choose(n,r) ∗ (p^r) ∗ (1−p) ^ (n−r)

col

Summary The col function returns all or a portion of a worksheet column, and can specify a 
column destination for transform results. 

Syntax col (column,top,bottom)

The column argument is the column number or title. To use a column title for the 
column argument, enclose the title in quotation marks. The top and bottom 
arguments specify the first and last row numbers, and can be omitted. The default 
row numbers are 1 and the end of the column, respectively; if both are omitted, the 
entire column is used. All parameters must be scalar. Data placed in a column inserts 
or overwrites according to the current insert mode.

Example 1 For the worksheet shown in Figure 5�1, the operation col(3) returns the entire range 
of five values, the operation col(3,4) returns {8.9, 9.1}, and the operation 
col("data2",2,3) returns {7.9,8.4}.

Example 2 For the worksheet shown in Figure 5�1, the operation col(4) = col(3)∗2 multiples all 
the values in column 3 and places the results in column 4.

n
r 

  n!

r! n r–( )!
----------------------=
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Related Functions cell 

complex

Summary Converts a block of real and imaginary numbers into a range of complex numbers. 

Syntax complex (range,range)

The first range contains the real values, the second range contains the imaginary 
values and is optional. If you do not specify the second range, the complex transform 
returns zeros for the imaginary numbers. If you do specify an imaginary range, it 
must contain the same number of values as the real value range.

Example If x = {1,2,3,4,5,6,7,8,9,10}, the operation complex(x) returns { {1,2,3,4,....,9,10}, 
{0,0,0,0,....,0,0}}.

If x = {1.0,-0.75,3.1} and y = {1.2,2.1,-1.1}, the operation complex(x,y) returns 
{{1.0,-0.75,3.1}, {1.2,2.1,-1.1}}.

Related Functions fft, invfft, real, imaginary, mulcpx, invcpx

cos

Summary This function returns ranges consisting of the cosine of each value in the argument 
given.

This and other trigonometric functions can take values in radians, degrees, or grads. 
This is determined by the Trigonometric Units selected in the User-Defined 
Transform dialog.

Syntax cos(numbers)

Figure 5�2
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The numbers argument can be a scalar or range.

If you regularly use values outside of the usual −2π to 2π (or equivalent) range, use 
the mod function to prevent loss of precision. Any missing value or text string 
contained within a range is ignored and returned as the string or missing value.

Example If you choose Degrees as your Trigonometric Units in the User-Defined Transform 
dialog, the operation cos({0,60,90,120,180}) returns values of 
{1,0.5,0,−0.5,−1}.

Related Functions acos, asin, atan
sin, tan

cosh

Summary This function returns the hyperbolic cosine of the specified argument.

Syntax cosh(numbers)

The numbers argument can be a scalar or range.

Like the circular trig functions, this function also accepts numbers in degrees, 
radians, or grads, depending on the units selected in the User-Defined Transform 
dialog. Any missing value or text string contained within a range is ignored and 
returned as the string or missing value.

Example The operation x = cosh(col(2)) sets the variable x to be the hyperbolic cosine of all 
data in column 2.

Related Functions sinh, tanh

count

Summary The count function returns the value or range of values equal to the number of non-
missing numeric values in a range. Missing values and text strings are not counted.

Syntax count(range)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column.

Examples For the worksheet in Figure 5�1:
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the operation count(col(1)) returns a value of 5,
the operation count(col(2)) returns a value of 6, and
the operation count(col(3)) returns a value of 0. 

Related Functions missing, size

data

Summary The data function generates a range of numbers from a starting number to an end 
number, in specified increments.

Syntax data(start,stop,step)

All arguments must be scalar. The start argument specifies the beginning number and 
the end argument sets the last number.

If the step parameter is omitted, it defaults to 1. The start parameter can be more 
than or less than the stop parameter. In either case, data steps in the correct direction. 
Remainders are ignored.

Examples The operation data(1,5) returns the range of values {1,2,3,4,5}.
The operation data(10,1,2) returns the values {10,8,6,4,2}.

Note that if start and stop are equal, this function produces a number of copies of 
start equal to step. For example, the operation data(1,1,4) returns {1,1,1,1}.

Related Functions size, [ ] array reference

Figure 5�3
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diff

Summary The diff function returns a range or ranges of numbers which are the differences 
between a given number in a range and the preceding number. The value of the 
preceding number is subtracted from the value of the following number.

Because there is no preceding number for the first number in a range, the value of the 
first number in the result is always the same as the first number in the argument 
range.

Syntax diff(range) 

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within the range is 
returned as the string or missing value.

Examples For x = {9,16,7}, the operation diff(x) returns a value of {9,7,−9}.
For y = {4,−6,12}, the operation diff(y) returns a value of {4,−10,18}.

Related Functions sum, total

dist

Summary The dist function returns a scalar representing the distance along a line. The line is 
described in segments defined by the X,Y pairs specified in an x range and a y range.

Syntax dist(x range,y range)

The x range argument contains the X coordinates, and the y range argument contains 
the Y coordinates. Corresponding values in these ranges form X,Y pairs. If the ranges 
are uneven in size, excess X or Y points are ignored.

Example For the ranges x ={0,1,1,0,0} and y = {0,0,1,1,0}, the operation dist(x,y) returns 
4.0. The X and Y coordinates provided describe a square of 1 unit x by 1 unit y.

Related Functions partdist

dsinp

Summary The dsinp function automatically generates the initial parameter estimates for a 
damped sinusoidal functions using the FFT method. The four parameter estimates 
are returned as a vector.
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Syntax dsinp(x range, y range)

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must be the same 
size, and the number of valid data points must be greater than or equal to 3. 

Σ dsinp is especially used to estimate parameters on waveform functions. This is only 
useful when this function is used in conjunction with nonlinear regression.

Related Functions sinp

exp

Summary The exp function returns a range of values consisting of the number e raised to each 
number in the specified range. This is numerically identical to the expression 
e^(numbers), but uses a faster algorithm.

Syntax exp(numbers)

The numbers argument can be a scalar or range of numbers. Any missing value or text 
string contained within a range is ignored and returned as the string or missing value.

Example The operation exp(1) returns a value of 2.718281828459045.

Related Functions ln

factorial

Summary The factorial function returns the factorial of a specified range.

Syntax factorial({range})

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
ignored and returned as the string or missing value. Non-integers are rounded down 
to the nearest integer or 1, whichever is larger.

For factorial(x):

x < 0 returns a missing value,
0 ≤ x < 180 returns x!, and
x ≥ 180 returns +∞

Example 1 The operation factorial({1,2,3,4,5}) returns {1,2,6,24,120}.
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Example 2 To create a transform equation function for the Poisson distribution, you can type: 

Poisson(m,x)=(m^x)∗exp(−m)/factorial(x)

fft

Summary The fft function finds the frequency domain representation of your data using the 
Fast Fourier Transform. 

Syntax fft(range)

The parameter can be a range of real values or a block of complex values. For 
complex values there are two columns of data. The first column contains the real 
values and the second column represents the imaginary values. This function works 
on data sizes of size 2n numbers. If your data set is not 2 n in length, the fft function 
pads 0 at the beginning and end of the data range to make the length 2 n.

The fft function returns a range of complex numbers.

Example For x = {1,2,3,4,5,6,7,8,9,10}, the operation fft(x) takes the Fourier transform of 
the ramp function with real data from 1 to 10 with 3 zeros padded on the front and 
back and returns a 2 by 16 block of complex numbers. 

Related Functions invfft, real, imaginary, complex, mulcpx, invcpx

for

Summary The for statement is a looping construct used for iterative processing. 

Syntax for loop variable = initial value to end value step increment do
equation
equation
.
.
.
end for

Transform equation statements are evaluated iteratively within the for loop.  When a 
for statement is encountered, all functions within the loop are evaluated separately 
from the rest of the transform.

The loop variable can be any previously undeclared variable name. The initial value 
for the loop is the beginning value to be used in the loop statements. The end value 
for the loop variable specifies the last value to be processed by the for statement. After 
the end value is processed, the loop is terminated. In addition, you can specify a loop 
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variable step increment, which is used to �skip� values when proceeding from the 
initial value to end value. If no increment is specified, an increment of 1 is assumed.

Σ You must separate for, to, step, do, end for, and all condition statement operators, 
variables and values with spaces.

The for loop statement is followed by a series of one or more transform equations 
which process the loop variable values. 

Inside for loops, you can: 

➤ indent equations

➤ nest for loops

Note that these conditions are allowed only within for loops. You cannot redefine 
variable names within for loops.

Example 1 The operation:

for i = 1 to size(col(1)) do
cell(2,i) = cell(1,i)*i
end for

multiplies all the values in column 1 by their row number and places them in column 
2. 

Example 2 The operation:

for j = cell(1,1) to cell (1,64) step 2 do
col(10) = col(9)^j
end for

Takes the value from cell (1,1) and increments by 2 until the value in cell (1,64) is 
reached, raises the data in column 9 to that power, and places the results in column 
10.

fwhm

Summary The fwhm function returns value of the x width at half-maxima in the ranges of 
coordinates provided, with optional Lowess smoothing.

Syntax fwhm(x range, y range,f)

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must have the 
same size, and the number of valid data points must be greater than or equal to 3.
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The optional f argument defines the amount of Lowess smoothing, and corresponds 
to the fraction of data points used for each regression. f must be greater than or equal 
to 0 and less than or equal to 1. . If f is omitted, no smoothing is used.

Example For x = {0,1,2}, y={0,1,4}, the operation 

col(1)=fwhm(x,y) 

places the x width at half-maxima 1.00 into column 1.

Related Functions xatymax

gaussian 

Summary This function generates a specified number of normally (Gaussian or �bell� shaped) 
distributed numbers from a seed number, using a supplied mean and standard 
deviation. 

Syntax gaussian(number,seed,mean,stddev)

The number argument specifies how many random numbers to generate.

The seed argument is the random number generation seed to be used by the function. 
If you want to generate a different random number sequence each time the function 
is used, enter 0/0 for the seed. Enter the same number to generate an identical 
random number sequence. If the seed argument is omitted, a randomly selected seed 
is used.

The mean and stddev arguments are the mean and standard deviation of the normal 
distribution curve, respectively. If mean and stddev are omitted, they default to 0 and 
1.

Note that function arguments are omitted from right to left. If you want to specify a 
stddev, you must either specify the mean argument or omit it by using 0/0.

Example The operation gaussian(100) uses a seed of 0 to produce 100 normally distributed 
random numbers, with a mean of 0.0 and a standard deviation of 1.0.

Related Functions random

histogram

Summary The histogram function produces a histogram of the values range in a specified range, 
using a defined interval set.

0 f 1≤ ≤
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Syntax histogram(range,buckets)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
ignored.

The buckets argument is used to specify either the number of evenly incremented 
histogram intervals, or both the number and ranges of the intervals. This value can 
be scalar or a range. In both versions, missing values and strings are ignored.

If the buckets parameter is a scalar, it must be a positive integer. A scalar buckets 
argument generates a number of intervals equal to the buckets value. The histogram 
intervals are evenly sized; the range is the minimum value to the maximum value of 
the specified range.

If the buckets argument is specified as a range, each number in the range becomes the 
upper bound (inclusive) of an interval. Values from −∞ to ≤ the first bucket fall in 
the first histogram interval, values from > first bucket to ≤ second bucket fall in the 
second interval, etc. The buckets range must be strictly increasing in value. An 
additional interval is defined to catch any value which does not fall into the defined 
ranges.  The number of values occurring in this extra interval (including 0, or no 
values outside the range) becomes the last entry of the range produced by histogram 
function. 

Example 1 For col(1) = {1,20,30,35,40,50,60}, the operation col(2) = histogram(col(1),3) 
places the range {2,3,2} in column 2. The bucket intervals are automatically set to 
20, 40, and 60, so that two of the values in column 1 fall under 20, three fall under 
40, and two fall under 60.

Example 2 For buckets = {25,50,75}, the operation col(3) = histogram(col(1),buckets) places 
{2,4,1,0} in col(3). Two of the values in column 1 fall under 25, four fall under 50, 
one under 75, and no values fall outside the range.

if

Summary The if function either selects one of two values based on a specified condition, or 
proceeds along a series of calculations bases on a specified condition.

Syntax if(condition,true value,false value)

The true value and false value arguments can be any scalar or range. For a true 
condition, the true value is returned; for a false condition, the false value is returned. 
If the false value argument is omitted, a false condition returns a missing value.

If the condition argument is scalar, then the entire true value or false value argument 
is returned. If the condition argument contains a range, the result is a new range. For 
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each true entry in the condition range, the corresponding entry in the true value 
argument is returned. For a false entry in the condition range, the corresponding 
entry in false value is returned. 

If the false value is omitted and the condition entry is false, the corresponding entry 
in the true value range is omitted. This can be used to conditionally extract data from 
a range.

Example 1 The operation col(2) = if(col(1)< 75,�FAIL","PASS") reads in the values from 
column 1, and places the word �FAIL� in column 2 if the column 1 value is less than 
75, and the word �PASS� if the value is 75 or greater.

Example 2 For the operation y = if(x < 2 or x > 4,99,x), an x value less than 2 or greater than 4 
returns a y value of 99, and all other x values return a y value equal to the 
corresponding x value.

If you set x = {1,2,3,4,5}, then y is returned as {99,2,3,4,99}. The condition was 
true for the first and last x range entries, so 99 was returned. The condition was false 
for x = 2, 3, and 4, so the x value was returned for the second, third, and fourth x 
values.

if...then...else

Summary The if...then...else function proceeds along one of two possible series of calculations 
based on a specified condition.

Syntax if condition then
statement
statement...

else
statement
statement...

end if

To use the if...then...else construct, follow the if condition then statement by one or 
more transform equation statements, then specify the else statement(s). When an 
if...then...else statement is encountered, all functions within the statement are 
evaluated separately from the rest of the transform.

Σ  You must separate if, then, and all condition statement operators, variables, and values 
with spaces.

Inside if...then...else constructs, you can: 

➤ type more than one equation on a line
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➤ indent equations

➤ nest additional if constructs

Note that these conditions are allowed only within if...else statements. You cannot 
redefine variable names within an if...then...else construct.

Example The operations:

i = cell(1,1)
j = cell(1,2)
If i < 1 and j > 1 then x = col(3)
else x = col(4)
end if

sets x equal to column 3 if i is less than 1 and j is greater than 1; otherwise, 
x is equal to column 4.

imaginary (img)

Summary The imaginary function strips the imaginary values out of a range of complex 
numbers. 

Syntax img(block)

The range is made up of complex numbers.

Example If x = {{1,2,3,4,5,6,7,8,9,10}, {0,0,0,....0,0}}, the operation img(x) returns 
{0,0,0,0,0,0,0,0,0,0}.

If x = {{1.0,-0.75, 3.1}, {1.2,2.1,-1.1}}, the operation img(x) returns {1.2,2.1,-
1.1}.

Related Functions real, fft, invfft, complex, mulcpx, invcpx

int

Summary The int function returns a number or range of numbers equal to the largest integer 
less than or equal to each corresponding number in the specified range. All numbers 
are rounded down to the nearest integer.

Syntax int(numbers)

The numbers argument can be a scalar or range of numbers. Any missing value or 
text string contained within a range is ignored and returned as the string or missing 
value.
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Example The operation int({.9,1.2,2.2,−3.8}) returns a range of {0.0,1.0,2.0,−4.0}.

Related Functions prec, round

interpolate

Summary The interpolate function performs linear interpolation on a set of X,Y pairs defined 
by an x range and a y range. The function returns a range of interpolated y values 
from a range of values between the minimum and maximum of the x range.

Syntax interpolate(x range,y range,range)

Values in the x range argument must be strictly increasing or strictly decreasing.

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Missing values and text strings are not allowed in the x range and 
y range. Text strings in range are replaced by missing values.

Extrapolation is not possible; missing value symbols are returned for range argument 
values less than the lowest x range value or greater than the highest x range value.

Examples For x = {0,1,2}, y = {0,1,4}, and range = data(0,2,.5) (this data operation returns 
numbers from 0 to 2 at increments of 0.5), the operation
col(1) = interpolate(x,y,range) places the range {0.0,0.5,1.0,2.5,4.0}
into column 1.

If range had included values outside the range for x, missing values would have been 
returned for those out-of-range values.

inv

Summary The inv function generates the inverse matrix of an invertible square matrix provided 
as a block. 

Syntax inv(block)

The block argument is a block of numbers with real values in the form of a square 
matrix. The number of rows must equal the number of columns.

The function returns a block of numbers with real values in the form of the inverse of 
the square matrix provided.
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Example For the matrix:

in block(2,3,4,5) the operation block(2,7)=inv(block(2,3,4,5)) generates the inverse 
matrix:

in block (2,7,4,9).

invcpx

Summary This function takes the reciprocal of a range of complex numbers. 

Syntax invcp(block)

The input and output are blocks of complex numbers. The invcpx function returns 
the range 1/c for each complex number in the input block. 

Example If x = complex ({3,0,1}, {0,1,1}), the operation invcpx(x) returns {{0.33333, 0.0, 
0.5}, {0.0,−1.0,−0.5}}.

Related Functions fft, invfft, real, imaginary, complex, mulcpx

invfft

Summary The inverse fft function (invfft) takes the inverse Fast Fourier Transform (fft) of the 
data produced by the fft to restore the data to its new filtered form.

Syntax invfft(block)

The parameter is a complex block of spectral numbers with the real values in the first 
column and the imaginary values in the second column. This data is usually 
generated from the fft function. The invfft function works on data sizes of size 2 n 

1.00 3.00 4.00

2.00 1.00 3.00

3.00 4.00 2.00

-0.40 0.40 0.20

0.20 -0.40 0.20

0.20 0.20 -0.20
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numbers. If your data set is not 2 n in length, the invfft function pads 0 at the 
beginning and end of the data range to make the length 2 n.

The function returns a complex block of numbers.

Example If x = {{1,2,3,...,9,10}, {0,0,0,...,0,0}}, the operation invfft(fft(x)) returns 
{{0,0,0,1,2,3,...,9,10,0,0,0}, {0,0,0,...0,0}.

Related Functions fft, real, imaginary, complex, mulcpx, invcpx

ln

Summary The ln function returns a value or range of values consisting of the natural logarithm 
of each number in the specified range.

Syntax ln(numbers)

The numbers argument can be a scalar or range of numbers. Any missing value or text 
string contained within a range is ignored and returned as the string or missing value.

For ln(x):

x < 0 returns an error message, and
x = 0 returns −∞

The largest value allowed is approximately x < 104933. 

Example The operation ln(2.71828) returns a value ≈ 1.0.

Related Functions exp

log

Summary The log function returns a value or range of values consisting of the base 10 
logarithm of each number in the specified range.

Syntax log(numbers)

The numbers argument can be a scalar or range of numbers. Any missing value or text 
string contained within a range is ignored and returned as the string or missing value.

For log(x):

x < 0 returns an error message,
x = 0 returns −∞
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The largest value allowed is approximately x < 104933.

Example The operation log(100) returns a value of 2.

lookup

Summary The lookup function compares values with a specified table of boundaries and 
returns either a corresponding index from a one-dimensional table, or a 
corresponding value from a two-dimensional table.

Syntax lookup(numbers,x table,y table)

The numbers argument is the range of values looked up in the specified x table. The x 
table argument consists of the upper bounds (inclusive) of the x intervals within the 
table and must be ascending in value. The lower bounds are the values of the 
previous numbers in the table ( −∞ for the first interval).

You must specify numbers and an x  table. If only the numbers and x  table arguments 
are specified, the lookup function returns an index number corresponding to the x  
table interval; the interval from - ∞ to the first boundary corresponds to an index of 
1, the second to 2, etc.

If a number value is larger than the last entry in x table, lookup will return a missing 
value as the index. You can avoid missing value results by specifying 1/0 (infinity) as 
the last value in x table.

The optional y table argument is used to assign y values to the x index numbers. The 
y table argument must be the same size as the x table argument, but the elements do 
not need to be in any particular order. If y table is specified, lookup returns the y 
table value corresponding to the x table index value, i.e., the first y table value for an 
index of 1, the second y table value for an index of 2, etc.

Σ Note that the x table and y table ranges correspond to what is normally called a 
�lookup table.�
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Example 1 For n={-4,11,31} and x={1,10,30}, col(1)=lookup(n,x)  places the index values of 1, 
3, and -- (missing value) in column 1. 

-4 falls beneath 1, or the first x boundary; 11 falls beyond 10 but below 30, and 31 
lies beyond 30. 

Example 2 To generate triplet values for the range {9,6,5}, you can use the expression 
lookup(data( 1/3,3,1/3),data(1,3),{9,6,5}) to return {9,9,9,6,6,6,5,5,5}. This looks 
up the numbers 1/3 , 2/3, 1, 1 1/3, 1 2/3, 2, 2 1/3, 22/3, and 3 using x table boundaries 
1, 2, and 3 and corresponding y table values 9, 6, and 5.   

index # 1 2 3

x table 1 10 30

-4

11

31 ��  (missing value)

y table 9 6 5

x table 1 2 3

1/3

2/3

1

1 1/3

1 2/3

2

2 1/3

22/3

3 
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lowess

Summary The lowess function returns smoothed y values as a range from the ranges of x and y 
variables provided, using a user-defined smoothing factor. �Lowess� means locally 
weighted regression. Each point along the smooth curve is obtained from a regression 
of data points close to the curve point with the closest points more heavily weighted.

Syntax lowess(x range, y range, f )

The x range argument specifies the x variable, and the y range argument specifies the y 
variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must be the same 
size, and the number of valid data points must be greater than or equal to 3. 

The f argument defines the amount of Lowess smoothing, and corresponds to the 
fraction of data points used for each regression. f must be greater than or equal to 0 
and less than or equal to 1. . Note that unlike lowpass, lowess requires an f 
argument.

Example For x = {1,2,3,4}, y={0.13, 0.17, 0.50, 0.60}, the operation 

col(1)=lowess(x,y,1) 

places the smoothed y data 0.10, 0.25, 0.43, 0.63 into column 1.

Related Functions lowpass

lowpass

Summary The lowpass function returns smoothed y values from ranges of x and y variables, 
using an optional user-defined smoothing factor that uses FFT and IFFT.

Syntax lowpass(x range, y range, f )

The x range argument specifies the x variable, and the y range argument specifies the y 
variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must be the same 
size, and the number of valid data points must be greater than or equal to 3. 

The optional f argument defines whether FFT and IFFT are used. f must be greater 
than or equal to 0 and less than or equal to 100 ( ). If f is omitted, no 
Fourier transformation is used.

Σ lowpass is especially designed to perform smoothing on waveform functions as a part 
of nonlinear regression.

0 f 1≤ ≤

0 f 100≤ ≤
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Example For x = {0,1,2}, y={0,1,4}, the operation 

col(1)=lowpass(x,y,88) 

places the newly smoothed data 0.25, 1.50, 2.25 into column 1.

Related Functions lowess

max

Summary The max function returns the largest number found in the range specified. 

Syntax max(range)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
ignored.

Example For x = {7,4,−4,5}, the operation max(x) returns a value of 7, and the operation 
min(x) returns a value of −4.

mean

Summary The mean function returns the average of the range specified. Use this function to 
calculate column averages (as opposed to using the avg function to calculate row 
averages).

The mean function calculates the arithmetic mean, defined as:

Syntax mean(range)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
ignored.

Example The operation mean({1,2,3,4}) returns a value of 2.5.

Related Functions avg

x 1
n---= xi

i 1=

n

∑
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min

Summary The min function returns the smallest number in the range specified.

Syntax min(range)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
ignored.

Example For x = {7,4,−4,5}, the operation max(x) returns a value of 7, and the operation 
min(x) returns a value of −4.

missing

Summary The missing function returns a value or range of values equal to the number of 
missing values and text strings in the specified range.

Syntax missing(range)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column.

Example For Figure 5�1, the operation missing(col(1)) returns a value of 1, the operation 
missing(col(2)) returns a value of 0, and the operation missing(col(3)) returns a value 
of 4.

Related Functions count, size

Figure 5�4
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mod

Summary The mod function returns the modulus (the remainder from division) for 
corresponding numbers in numerator and divisor arguments.

This is the real (not integral) modulus, so both ranges may be nonintegral values.

Syntax mod(numerator,divisor)

The numerator and divisor arguments can be scalars or ranges. Any missing value or 
text string contained within a range is returned as the string or missing value.

For any divisor ≠ 0, the mod function returns the remainder of .

For mod(x,0), that is, for divisor = 0,

x > 0 returns +∞
x = 0 returns +∞
x < 0 returns −∞

Example The operation mod({4,5,4,5},{2,2,3,3}) returns the range {0,1,1,2}. These are the 
remainders for 4÷2, 5÷2, 4÷3, and 5÷3.

mulcpx

Summary The mulcpx function multiplies two blocks of complex numbers together.

Syntax mulcpx(block, block)

Both input blocks should be the same length. The mulcpx function returns a block 
that contains the complex multiplication of the two ranges. 

Example If u = {{1,1,0},{0,1,1}}, the operation mulcpx(u,u) returns {{1,0,−1}, {0,2,0}}.

Related Functions fft, invfft, real, imaginary, complex, invcpx

nth

Summary The nth function returns a sampling of a provided range, with the frequency 
indicated by a scalar number. The result always begins with the first entry in the 
specified range.

Syntax nth(range,increment)

numerator
divisor

---------------------------------
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The range argument is either a specified range (indicated with the {} brackets) or a 
worksheet column. The increment argument must be a positive integer.

Example The operation col(1)=nth({1,2,3,4,5,6,7,8,9,10},3)  places the range {1,4,7,10} in 
column 1. Every third value of the range is returned, beginning with 1.

partdist

Summary The partdist function returns a range representing the distance from the first X,Y pair 
to each other successive pair. The line segment X,Y pairs are specified by an x range 
and a y range.

The last value in this range is numerically the same as that returned by dist, assuming 
the same x and y ranges.

Syntax partdist(x range,y range)

The x range argument specifies the  x coordinates, and the y range argument specifies 
the y coordinates. Corresponding values in these ranges form xy pairs.

If the ranges are uneven in size, excess x or y points are ignored.

Example For the ranges x = {0,1,1,0,0} and y = {0,0,1,1,0}, the operation partdist(x,y) 
returns a range of {0,1,2,3,4}. The X and Y coordinates provided describe a square 
of 1 unit x by 1 unit y.

Related Functions dist

polynomial

Summary The polynomial function returns the results for independent variable values in 
polynomials. Given the coefficients, this function produces a range of y values for the 
corresponding x values in range.

The function takes one of two forms. The first form has two arguments, both of 
which are ranges. Values in the first range are the independent variable values. The 
second range represents the coefficients of the polynomial, with the constant 
coefficient listed first, and the highest order coefficient listed last.

The second form accepts two or more arguments. The first argument is a range 
consisting of the independent variable values. All successive arguments are scalar and 
represent the coefficients of a polynomial, with the constant coefficient listed first 
and the highest order coefficient listed last.
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Syntax polynomial(range,coefficents) or
polynomial(range,a0,a1,...,an)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Text strings contained within a range are returned as a missing 
value.

The coefficients argument is a range consisting of the polynomial coefficient values, 
from lowest to highest. Alternately, the coefficients can be listed individually as 
scalars.

Example To solve the polynomial  for x values of 0, 1, and 2, type the 
equation polynomial({0,1,2},1,1,1) . Alternately, you could set x ={1,1,1}, then 
enter polynomial({0,1,2},x) . Both operations return a range of {1,3,7}.

prec

Summary The prec function rounds a number or range of numbers to the specified number of 
significant digits, or places of significance. Values are rounded to the nearest integer; 
values of exactly 0.5 are rounded up.

Syntax prec(numbers,digits)

The numbers argument can be a scalar or range of numbers. Any missing value or text 
string contained within a range is ignored and returned as the string or missing value.

If the digits argument is a scalar, all numbers in the range have the same number of 
places of significance. If the digits argument is a range, the number of places of 
significance vary according to the corresponding range values. If the size of the digits 
range is smaller than the numbers range, the function returns missing values for all 
numbers with no corresponding digits.

Example For x = {13570,3.141,.0155,999,1.92}, the operation prec(x,2) returns 
{14000,3.100,.0160,1000,1.90}.

For y = {123.5,123.5,123.5,123.5}, the operation prec(y,{1,2,3,4}) returns {100.0, 
120.0,124.0,123.5}.

Related Functions int, round

put into

Summary The put into function places calculation results in a designated column on the 
worksheet. It operates faster than the equivalent equality relationship.

y x2 x 1+ +=
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Syntax put results into col(column)

The results argument can be either the result of an equation, function or variable. The 
column argument is either the column number of the destination column, or the 
column title, enclosed in quotes. 

Data put into columns inserts or overwrites according to the current insert mode.

Example To place the results of the equation y = data(1,100) in column 1, you can type col(1) 
= y. However, entering put y into col(1)  runs faster.

Related Functions col = (arithmetic) operator

random

Summary This function generates a specified number of uniformly distributed numbers within 
the range. 

Rand and rnd are synonyms for the random function.

Syntax random(number,seed,low,high)

The number argument specifies how many random numbers to generate.

The seed argument is the random number generation seed to be used by the 
function. If you want to generate a different random number sequence each time the 
function is used, enter 0/0 for the seed. If the seed argument is omitted, a randomly 
selected seed is used.

The low and high arguments specify the beginning and end of the random number 
distribution range. The low boundary is included in the range. If low and high are 
omitted, they default to 0 and 1, respectively.

Note that function arguments are omitted from right to left. If you want to specify a 
high boundary, you must specify the low boundary argument first.

Example The operation random(50,0/0,1,7)  produces 50 uniformly distributed random 
numbers between 1 and 7. The sequence is different each time this random function 
is used.

Related Functions gaussian
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real

Summary The real function strips the real values from a complex block of numbers. 

Syntax real (range)

The range argument consists of complex numbers.

Example If x = complex ({1,2,3,...,9,10}, {0,0,...,0}), the operation real(x) returns 
{1,2,3,4,5,6,7,8,9,10}, leaving the imaginary values out.

Related Functions fft, invfft, imaginary, complex, mulcpx, invcpx

rgbcolor

Summary The transform function rgbcolor takes arguments r, g, and b between 0 and 255 and 
returns the corresponding color to cells in the worksheet. This function can be used 
to apply custom colors to any element of a graph or plot that can use colors chosen 
from a worksheet column. 

Syntax rgbcolor(r,g,b)

The r,g,b arguments define the red, green, and blue intensity portions of the color. 
These values must be scalars between 0 and 255. Numbers for the arguments less 
than 0 or greater than 255 are truncated to these values.  

Examples The operation rgbcolor(255,0,0)  returns red.
The operation rgbcolor(0,255,0)  returns green.
The operation rgbcolor(0,0,255)  returns blue.

The following statements place the secondary colors yellow, magenta, and cyan into 
rows 1, 2, and 3 into column 1:

cell(1,1)=rgbcolor(255,255,0)
cell(1,2)=rgbcolor(255,0,255)
cell(1,3)=rgbcolor(0,255,255)

Shades of gray are generated using equal arguments. To place black, gray, and white 
in the first three rows of column 1:

cell(1,1)=rgbcolor(0,0,0)
cell(1,2)=rgbcolor(127,127,127)
cell(1,3)=rgbcolor(255,255,255)
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round

Summary The round function rounds a number or range of numbers to the specified decimal 
places of accuracy. Values are rounded up or down to the nearest integer; values of 
exactly 0.5 are rounded up.

Syntax round(numbers,places)

The numbers argument can be a scalar or range of numbers. Any missing value or 
text string contained within a range is ignored and returned as the string or missing 
value.

If the places argument is negative, rounding occurs to the left of the decimal point. 
To round to the nearest whole number, use a places argument of 0.

Examples The operation round(92.1541,2)  returns a value of 92.15.
The operation round(0.19112,1)  returns a value of 0.2.
The operation round(92.1541,−2) returns a value of 100.0.

Related Functions int, prec

runavg

Summary The runavg function produces a range of running averages, using a window of a 
specified size as the size of the range to be averaged. The resulting range is the same 
length as the argument range.

Syntax runavg(range,window)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
replaced with 0.

If the window argument is even, the next highest odd number is used. The tails of 
the running average are computed by appending

 additional initial and final values to their respective ends of range.
window 1–( )

2
------------------------
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Example The operation runavg({1,2,3,4,5},3) returns {1.33,2,3,4,4.67}.

The value of the window argument is 3, so the first result value is calculated as:

The second value is calculated as:

 , etc. 

Related Functions avg

mean

sin

Summary This function returns ranges consisting of the sine of each value in the argument 
given.

This and other trigonometric functions can take values in radians, degrees, or grads. 
This is determined by the Trigonometric Units selected in the User-Defined 
Transform dialog.

Syntax sin(numbers)

The numbers argument can be a scalar or range.

If you regularly use values outside of the usual −2π to 2π (or equivalent) range, use 
the mod function to prevent loss of precision. Any missing value or text string 
contained within a range is ignored and returned as the string or missing value.

Example If you choose Degrees as your Trigonometric Units in the transform dialog, the 
operation sin({0,30,90,180,270}) returns values of {0,0.5,1,0,−1}.

Related Functions acos, asin, atan
cos, tan

3 1–( )
2

---------------- 1 2+ +

3
-----------------------------------

1 2 3+ +
3

---------------------
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sinh

Summary This function returns the hyperbolic sine of the specified argument.

Syntax sinh(numbers)

The numbers argument can be a scalar or range.

Like the circular trig functions, this function also accepts numbers in degrees, 
radians, or grads, depending on the units selected in the User-Defined Transform 
dialog. 

Example The operation x = sinh(col(3)) sets the variable x to be the hyperbolic sine of all data 
in column 3.

Related Functions cosh, tanh

sinp

Summary The sinp function automatically generates the initial parameter estimates for a 
sinusoidual functions using the FFT method. The three parameter estimates are 
returned as a vector.

Syntax sinp(x range, y range)

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point.  x range and y range must be the same 
size, and the number of valid data points must be greater than or equal to 3. 

Σ sinp is especially used to perform smoothing on waveform functions, used in 
determination of initial parameter estimates for nonlinear regression.

size

Summary The size function returns a value equal to the total number of elements in the 
specified range, including all numbers, missing values, and text strings.

Note that .

Syntax size(range)

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column.

size X( ) count X( ) missing X( )+½
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Example For Figure 5�1:

the operation size(col(1)) returns a value of 6,
the operation size(col(2)) returns a value of 6, and
the operation size(col(3)) returns a value of 4.

Related Functions count, missing

sort

Summary This function can be used to sort a range of numbers in ascending order, or a range of 
numbers in ascending order together with a block of data.

Syntax sort(block,range)

The range argument can be either a specified range (indicated with the {} brackets) 
or a worksheet column. If the block argument is omitted, the data in range is sorted 
in ascending order.

Example The operation col(2) = sort(col(1)) returns the contents of column 1 arranged in 
ascending order and places it in column 2.

To reverse the order of the sort, you can create a custom function:

reverse(x) = x[data(size(x),1)]

then apply it to the results of the sort. For example, reverse(sort(x))  sorts range x in 
descending order.

Figure 5�5
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Example The operation:

block(3,1) = sort(block(1,1,2,size(col(2)),col(2))

sorts data in columns 1 and 2 using column 2 as the key column and places the 
sorted data in columns 3 and 4.

Related Functions size, data

sqrt

Summary The sqrt function returns a value or range of values consisting of the square root of 
each value in the specified range. Numerically, this is the same as { numbers}^0.5, but 
uses a faster algorithm.

Syntax sqrt(numbers)

The numbers argument can be a scalar or range of numbers. Any missing value or text 
string contained within a range is ignored and returned as the string or missing value.

For numbers < 0, sqrt generates a missing value.

Example The operation sqrt({−1,0,1,2}) returns the range {--,0,1,1.414}.

stddev

Summary The stddev function returns the standard deviation of the specified range, as defined 
by:

Syntax stddev(range) 

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
ignored.

Example For the range x = {1,2}, the operation stddev(x) returns a value of .70711.

Related Functions stderr
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stderr

Summary The stderr function returns the standard error of the mean of the specified range, as 
defined by

where s is the standard deviation.

Syntax stderr(range) 

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any missing value or text string contained within a range is 
ignored.

Example For the range x = {1,2}, the operation stderr(x) returns a value of 0.5.

Related Functions stddev

subblock

Summary The subblock function returns a block of cells from within another previously 
defined block of cells from the worksheet. The subblock is defined using the upper 
left and lower right cells of the subblock, relative to the range defined by the source 
block.

Syntax subblock (block, column 1, row 1, column 2, row 2 )

The block argument can be a variable defined as a block, or a block function 
statement.

The column 1 and row 1 arguments are the relative coordinates for the upper left cell 
of the subblock with respect to the source block. The column 2 and row 2 arguments 
are the relative coordinates for the lower right cell of the subblock. All values within 
this range are returned. Operations performed on a block always return a block. If 
column 2 and row 2 are omitted, then the last row and/or column is assumed to be 
the last row and column of the source block.

All column and row arguments must be scalar (not ranges). 

Example For x = block (3,1,20,42) the operation subblock (x,1,1,1,1)  returns cell (3,1) and 
the operation subblock (x,5,5)  returns the block from cell (7, 5) to cell (20, 42).

Related Functions block, blockheight, blockwidth

s

n
-------
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sum

Summary The function sum returns a range of numbers representing the accumulated sums 
along the list. The value of the number is added to the value of the preceding 
cumulative sum.

Because there is no preceding number for the first number in a range, the value of the 
first number in the result is always the same as the first number in the argument 
range.

Syntax sum(range) 

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Any text string or missing value contained within the range is 
returned as the string or missing value.

Example For x = {2,6,7}, the operation sum(x) returns a value of {2,8,15}.
For y = {4,12,−6}, the operation sum(y) returns a value of {4,16,10}.

Related Functions diff, total

tan

Summary This function returns ranges consisting of the tangent of each value in the argument 
given.

This and other trigonometric functions can take values in radians, degrees, or grads. 
This is determined by the Trigonometric Units selected in the User-Defined 
Transform dialog.

Syntax tan(numbers)

The numbers argument can be a scalar or range.

If you regularly use values outside of the usual −2π to 2π (or equivalent) range, use 
the mod function to prevent loss of precision. Any missing value or text string 
contained within a range is ignored and returned as the string or missing value.

Example If you choose Degrees as your Trigonometric Units in the transform dialog, the 
operation tan({0,45,135,180}) returns values of {0,1,−1,0}.

Related Functions acos, asin, atan
cos, sin
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tanh

Summary This function returns the hyperbolic tangent of the specified argument.

Syntax tanh(numbers)

The numbers argument can be a scalar or range.

Like the circular trig functions, this function also accepts numbers in degrees, 
radians, or grads, depending on the units selected in the User-Defined Transform 
dialog.

Example The operation x = tanh(col(3)) sets the variable x to be the hyperbolic tangent of all 
data in column 3.

Related Functions cosh, sinh

total

Summary The function total returns a single value equal to the total sum of all numbers in a 
specified range. Numerically, this is the same as the last number returned by the sum 
function.

Syntax total(range) 

The range argument must be a single range (indicated with the {} brackets) or a 
worksheet column. Missing values and text strings contained within the range are 
ignored. 

Examples For x = {9,16,7}, the operation total(x) returns a value of 32.
For y = {4,12,−6}, the operation total(y) returns a value of 10.

Related Functions diff, sum 

x25

Summary The x25 function returns value of the x at  in the ranges of coordinates 
provided, with optional Lowess smoothing. This is typically used to return the x 
value for the y value at 25% of the distance from the minimum to the maximum of 
smoothed data for sigmoidal shaped functions.

ymin

r
range

4
----------------+
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Syntax x25(x range, y range, f )

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must have the 
same size, and the number of valid data points must be greater than or equal to 3.

The optional f argument defines the amount of Lowess smoothing, and corresponds 
to the fraction of data points used for each regression. f must be greater than or equal 
to 0 and less than or equal to 1. . If f is omitted, no smoothing is used.

Example For x = {0,1,2}, y={0,1,4}, the operation 

col(1)=x25(x,y) 

places the x at  as 1.00 into column 1.

Related Functions x50, x75, xatymax, xwtr

x50

Summary The x50 function returns value of the x at  in the ranges of coordinates 
provided, with optional Lowess smoothing. This is typically used to return the x 
value for the y value at 50% of the distance from the minimum to the maximum of 
smoothed data for sigmoidal shaped functions.

Syntax x50(x range, y range, f )

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must have the 
same size, and the number of valid data points must be greater than or equal to 3.

The optional f argument defines the amount of Lowess smoothing, and corresponds 
to the fraction of data points used for each regression. f must be greater than or equal 
to 0 and less than or equal to 1. . If f is omitted, no smoothing is used.

Example For x = {0,1,2}, y={0,1,4}, the operation 

col(1)=x50(x,y) 

places the x at  as 1.00 into column 1.

Related Functions x25, x75, xatymax, xwtr

0 f 1≤ ≤
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x75

Summary The x75 function returns value of the x at  in the ranges of coordinates 
provided, with optional Lowess smoothing. This is typically used to return the x 
value for the y value at 75% of the distance from the minimum to the maximum of 
smoothed data for sigmoidal shaped functions.

Syntax x75(x range, y range, f )

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must have the 
same size, and the number of valid data points must be greater than or equal to 3.

The optional f argument defines the amount of Lowess smoothing, and corresponds 
to the fraction of data points used for each regression. f must be greater than or equal 
to 0 and less than or equal to 1. . If f is omitted, no smoothing is used.

Example For x = {0,1,2}, y={0,1,4}, the operation 

col(1)=x75(x,y) 

places the x at  as 2.00 into column 1.

Related Functions x25, x50, xatymax, xwtr

xatymax

Summary The xatymax function returns the x value at the maximum y value found, with 
optional Lowess smoothing.

Syntax xatymax(x range, y range, f )

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must have the 
same size, and the number of valid data points must be greater than or equal to 3.

The optional f argument defines the amount of Lowess smoothing, and corresponds 
to the fraction of data points used for each regression. f must be greater than or equal 
to 0 and less than or equal to 1. . If f is not defined, no smoothing is used.

Σ If duplicate y maximums are found xatymax will return the average value of all the x 
at y maximums.
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Example For x = {0,1,2}, y={0,1,4}, the operation 

col(1)=xatymax(x,y) 

places the x at the y maximum as 2.00 into column 1.

Related Functions x25, x50, x75, xwtr

xwtr

Summary The xwtr function returns value of x75-x25 in the ranges of coordinates provided, 
with optional Lowess smoothing.

Syntax xwtr(x range, y range, f )

The x range argument specifies the x variable, and the y range argument specifies the 
y variable. Any missing value or text string contained within one of the ranges is 
ignored and will not be treated as a data point. x range and y range must have the 
same size, and the number of valid data points must be greater than or equal to 3.

The optional f argument defines the amount of Lowess smoothing, and corresponds 
to the fraction of data points used for each regression. f must be greater than or equal 
to 0 and less than or equal to 1. . If f is omitted, no smoothing is used.

Example For x = {0,1,2}, y={0,1,4}, the operation 

col(1)=xwtr(x,y) 

places the x75-x25 as double 1.00 into column 1.

Related Functions x25, x50, x75, xatymax

User-defined Functions 0

You can create any user-defined function, consisting of any expression in the 
transform language, and then refer to it by name.

For example, the following transform defines the function dist2pts, which returns the 
distance between two points

dist2pts(x1,y1,x2,y2) = sqrt((x2−x1)^2+(y2−y1)^2)

You can then use this custom-defined function, instead of the expression to the right 
of the equal sign, in subsequent equations. For example, to plot the distances 

0 f 1≤ ≤
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between two sets of XY coordinates, with the first points stored in columns 1 and 2, 
and the second in columns 3 and 4, enter:

col(5) = dist2pts(col(1),col(2),col(3),col(4))

The resulting distances are placed in column 5.

Saving
User-Defined

Functions

Frequently used variable values and custom transforms can be saved to a transform 
file, then copied and pasted into the desired transform.

To save user-defined functions to a file, then apply them to a transform:

1. Define the variables and functions in the Transform window, then click the Save 
button.

2. When the Save dialog appears, name the file something like �User-Defined 
Functions.�

3. Select the function you want to use in the transform, then press Ctrl+C or 
Ctrl+Ins.

4. Open the transform file you want to copy the function to, click the point in the 
text where you want to enter the function, then press Ctrl+V or Shift+Ins.
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Example Transforms

Many mathematical transform examples, along with appropriate graphs and 
worksheets are included with SigmaPlot. This chapter is describes the data transform 
examples and the graphing transform examples provided. Each description contains 
the text of the transform and, where applicable, a graph displaying the possible 
results of the transform. 

The sample transforms and the XFMS.JNB notebook can be found in the XFMS 
folder. 

Data Transform Examples 0

The data transform examples are provided to show you how transform equations can 
manipulate and calculate data. 

One Way Analysis of Variance (ANOVA) 0

A One Way Analysis of Variance (ANOVA) table can be created from the results of a 
regression or nonlinear regression. The original Y values, the Y data from the fitted 
curve, and the parameters are used to generate the table.

The transform assumes you have placed the original Y data in column 2, the fitted Y 
data in column 3, and the regression coefficients or function parameters in column 4. 
You can either place this data in these columns, or change the column numbers used 
by the transform.

The One Way ANOVA transform contains examples of the following transform 
functions:

➤ count

➤ if

➤ total

➤ mean

➤ {...} (constructor notation)

6
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To use the One Way ANOVA transform:

1. Make sure your original Y data is in column 2. Perform the desired regression 
using the Regression Wizard, and save your your Predicted values (fitted Y data) 
in column 3, and Parameters (the regression coefficients) in column 4. 

For more information on using the Regression Wizard, see Chapter 8, �Regres-
sion Wizard.�

2. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton and open the ANOVA.XFM transform file in the XFMS directory. The 
ANOVA transform appears in the edit window. 

3. Click Execute. The ANOVA results are placed in columns 5 through 9, or 
beginning at the column specified with the anova variable.

One Way
ANOVA Transform

(ANOVA.XFM)

‘****** Analysis of Variance (ANOVA) Table ******
‘This transform takes regression or curve fit
‘results and constructs an ANOVA table
‘Required INPUT: y data, fitted y data, function
‘         parameters/coefficients
‘RESULTS: sum of squares, degrees of freedom, mean
‘     squared, F-value, R-squared & R values,
‘     standard error of fit;
‘INPUT to be placed in (specify source columns):
y_col=2      ‘y data column number
fit_col=3     ‘fitted y data column number
param_col=4    ‘parameter column number
‘ANOVA to be placed in column:
anova=5      ‘ANOVA table starting column
          ‘(5 columns x 10 rows)
y=col(y_col)   ‘define y values
f=col(fit_col)  ‘define fitted y values
p=col(param_col) ‘define function parameters
n=count(y)    ‘number of y data points
tdof=n-1     ‘total degrees of freedom
r=count(if(p<>0,p,"--")) ‘the number of nonzero
             ‘parameters
‘******* ANOVA TABLE CALCULATION *******
‘Regression Degrees of Freedom:
rdof=tdof-if(r<count(p),r-2,count(p)-1)
‘Error Degrees of Freedom:
edof=tdof-rdof
‘Sum of Squares of Residuals:
SSE=total((y-f)^2)
‘Sum of Squares of Error about the Mean:
SSM=total((y-mean(y))^2)
‘Sum of Squares of Error due to Regression:
SSR=SSM-SSE
‘Standard Error of Fit:
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se=sqrt(SSE/rdof)
‘F value:
f1=((SSM-SSE)/(edof))/(SSE/rdof)
F=if(n<2,"n < 2 !",f1)
‘R squared:
R2=(1-SSE/SSM)
‘****** PLACE ANOVA TABLE IN WORKSHEET *******
col(anova)={0/0,"REGRESSION","ERROR","TOTAL"}
col(anova+1)={"SUM OF SQUARES",SSR,SSE,SSM}
col(anova+2)={"DEG FREEDOM",edof,rdof,tdof}
col(anova+3)={"MEAN SQUARE",(SSR/edof),(SSE/rdof)}
col(anova+4)={"F",F}
col(anova,7)={"#POINTS","R SQUARED","R","STD ERR"}
col(anova+1,7)={n,R2,sqrt(R2),se}

Area Beneath a Curve Using Trapezoidal Rule 0

This transform computes the area beneath a curve from X and Y data columns using 
the trapezoidal rule for unequally spaced X values. The algorithm applies equally well 
to equally spaced X values.

This transform uses an example of the diff function.

To use the Area Under Curve transform:

1. Place your X data in column 1 and your Y data in column 2. If your data has 
been placed in other columns, you can specify these columns after you open the 
AREA.XFM file. You can use an existing or new worksheet.

2. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton and open the AREA.XFM transform file in the XFMS directory. The Area 
transform appears in the edit window.

3. Click Execute. The area is placed in column 3 or in the column specified with 
the res variable.

Area Under
Curve Transform

(AREA.XFM)

‘*Transform for Calculating Area Beneath a Curve*
‘ This transform integrates under curves using the
‘  trapezoidal rule. This can be used for equal
‘  or unequally spaced x values.
‘  The algorithm is: sigma i from 0 to n-1, or
‘  {yi(xi+1 - xi) + (1/2)(yi+1 - yi)(xi+1 - xi)}
‘ Place your x data in x_col and y data in y_col or
‘ change the column numbers to suit your data.
‘ Results are placed in column res.
x_col=1      ‘column number for x data
y_col=2      ‘column number for y data
res=3       ‘column number for result
‘Define x and y data
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x=col(x_col)
y=col(y_col)
‘**************** CALCULATE AREA ****************
‘Compute the range of differences between
‘ x[i] & x[i-1]
xdif1=diff(x)
n=count(x)        ‘Delete first value-
xdif=xdif1[data(2,n)]   ‘not a difference
‘Compute the range of differences between
‘ y[i] & y[i-1]
ydif1=diff(y)       ‘Delete first value-
ydif=ydif1[data(2,n)]   ‘not a difference
‘Use only y values from y[1] to y[n-1]
y1=y[data(1,n-1)]
‘Calculate trapezoidal integration
intgrl=y1*xdif+0.5*ydif*xdif
a=total(intgrl)
‘******** PLACE RESULTS IN WORKSHEET *********
col(res)=a    ‘Put area in column res 

Bivariate Statistics 0

This transform takes two data columns of equal length and computes their means, 
standard deviations, covariance, and correlation coefficient. The columns must be of 
equal length.

The Bivariate transform uses examples of these transform functions

➤ mean

➤ stddev

➤ total
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To use the Bivariate transform:

1. Place your X data in column 1 and your Y data in column 2. If your data has 
been placed in other columns, you can specify these columns after you open the 
BIVARIAT.XFM transform file. You can enter data into an existing worksheet or 
a new worksheet.

2. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the BIVARIAT.XFM transform file in the XFMS directory. The 
Bivariate Statistics transform appears in the edit window.

3. Click Execute. The results are placed in columns 3 and 4, or beginning in the 
column specified with the res variable.

Bivariate Statistics
Transform

(BIVARIAT.XFM)

‘ This transform integrates under curves using the
‘ trapezoidal rule
‘*** Transform to Compute Bivariate Statistics ***
‘ This transform takes x and y data and returns
‘ the means, standard deviations, covariance, and
‘ correlation coefficient (rxy)
‘ Place your x data in x_col and y data in y_col
‘ or change the column numbers to suit your data.
‘ Results are placed in columns res and res+1
x_col=1    ‘column number for x data
y_col=2    ‘column number for y data
res=3     ‘first results column
‘Define x and y data
x=col(x_col)
y=col(y_col)
‘************* CALCULATE STATISTICS *************
n=size(col(x_col))  ‘number of x values
           ‘n must be > 1
mx=mean(x)      ‘mean of x data
my=mean(y)      ‘mean of y data
sx=stddev(x)     ‘standard deviation of x data
sy=stddev(y)     ‘standard deviation of y data
‘covariance of x and y
sxy=if(n>1,(total(x*y)-n*mx*my)/(n-1),0)
‘correlation coefficient of x and y
rxy=sxy/(sx*sy)
‘********* PLACE STATISTICS IN WORKSHEET *********
col(res)={"N","MEAN X","MEAN Y","STD DEV X",
 "STD DEV Y","COVARIANCE","CORR COEFF"}
col(res+1)= if(n>1,{n,mx,my,sx,sy,sxy,rxy},"n<=1") 
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Differential Equation Solving 0

This transform can be used to solve user-defined differential equations. You can 
define up to four first order equations, named fp1(x 1,y1,y2,y3,y4) through 
fp4(x1,y1,y2,y3,y4). Set any unused equations = 0 .

To solve a first order differential equation:

1. Begin a new worksheet by choosing the File menu New command, then choos-
ing Worksheet; this transform requires a clean worksheet to work correctly. 

2. Open the User-Defined Transforms dialog by selecting the Transforms menu 
User Defined command, then clicking the Open button, and opening the DIF-
FEQN.XFM transform file in the XFMS directory. The Differential Equation 
Solving transform appears in the edit window. 

3. Scroll to the Number of Equations section and enter a value for the neqn vari-
able. This is the number of equations you want to solve, up to four.

4. Scroll down to the Differential Equations section, and set the fp1 through fp4 
functions to the desired functions. Set any unused equations = 0. If only one 
first order differential equation is used, then only the fp1 transform equation is 
used and fp2, fp3, and fp4 are set to 0. For example, if you only wanted to solve 
the differential equation:

you would enter:

fp1(x,y1,y2,y3,y4) = −a*y1
fp2(x,y1,y2,y3,y4) = 0
fp3(x,y1,y2,y3,y4) = 0
fp4(x,y1,y2,y3,y4) = 0

5. Scroll down to the Initial Values heading and set the nstep variable to the num-
ber of integration (X variable) steps you want to use. The more steps you set, the 
longer the transform takes.

6. Set the initial X value x0, final X value x1, and the Y1 through Y4 values (placed 
in cells (2,1) through (5,1)). If you are not using a y 1 value, set that value to 

zero (0). For example, for the single equation example above, you could enter:

x0 = 0             ;initial x
x1 = 1             ;final x 
cell(2,1) = 1         ;y1 initial value
cell(3,1) = 0         ;y2 initial value

dy1

dt
-------- ay1–=
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cell(4,1) = 0         ;y3 initial value
cell(5,1) = 0         ;y4 initial value

7. Click Execute. The results output is placed in columns 1 through neqn+1. 

8. To graph your results, create a Line Plot graphing column 1 as your X data and 
columns 2 through 5 as your Y data.

For information on creating a graph plotting one X data column against many Y 
data columns see the SigmaPlot�s User�s Manual.

Differential Equation
Solving Transform

(DIFFEQN.XFM)

The transform example solves the equations:

Figure 6�1
Differential Equation Graph Plasma Iron Kinetics - IV Bolus 55Fe
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‘*** Solution of Coupled First Order Differential ***
‘*** Equations by Fourth Order Runge-Kutta Method ***

‘   ***** Number of Equations *****
‘Enter the number of differential equations "neqn"
‘the number of differential equations, less than or 
‘equal to 4

neqn = 4     ‘number of differential equations

‘    ***** Differential Equations ******
‘Set the functions fp1, fp2, fp3, fp4 to be equal to 
‘coupled first order ordinary differential equations
‘where x is the independent variable and y1, y2, y3,
‘and y4 are the dependent variables. The number of 
‘equations must be equal to the neqn value set above.

‘If neqn < 4 then use zeros (0) for the unused 
‘equations

fp1(x,y1,y2,y3,y4) = -(r65+r75+r85)*y1+r56*y2+r57*y3
fp2(x,y1,y2,y3,y4) = r65*y1-r56*y2
fp3(x,y1,y2,y3,y4) = r75*y1-r57*y3
fp4(x,y1,y2,y3,y4) = r85*y1

‘      ****** Initial Values ******
‘Enter the maximum number of integration
‘steps "nstep".

nstep = 25   ;number of integration steps

‘Enter the initial and final x values followed by the 
‘initial values of y1 (and y2, y3 and y4, if they are
‘used). If neqn < 4 then use zeros (0) for the unused 
‘initial yi values.

x0 = 0      ‘initial x
x1 = 1      ‘final x 
cell(2,1) = 100 ‘y1 initial value
cell(3,1) = 0  ‘y2 initial value
cell(4,1) = 0  ‘y3 initial value
cell(5,1) = 0  ‘y4 initial value

‘      **** RESULTS ****
‘ The output will be placed in columns 1 through neqn+1.
‘x is placed in column 1. The yi values are placed in 
‘columns 2 through neqn+1. Other columns are used for 
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‘program working space.

‘   ***** Parameter Values *****
‘Enter all necessary parameter values below 

r65 = 2.2
r75 = 2.3
r85 = 8.4
r56 = 4.2
r57 = 0.32

‘     ********** PROGRAM **********

fp(x,y1,y2,y3,y4,m) = if(m=1, fp1(x,y1,y2,y3,y4),
      if(m=2, fp2(x,y1,y2,y3,y4),
      if(m=3, fp3(x,y1,y2,y3,y4),
      if(m=4, fp4(x,y1,y2,y3,y4)))))
h = (x1-x0)/nstep
hh = 0.5*h
h6 = h/6
cell(1,1) = x0
n2 = neqn+2    ‘yt
n3 = neqn+3    ‘dydx
n4 = neqn+4    ‘dyt
n5 = neqn+5    ‘dym

‘ Fixed Step Size Fourth Order Runge-Kutta
for k = 1 to nstep do
  xk = x0 + (k-1)*h
  xh = xk + hh

 for i = 1 to neqn do
   cell(n3,i) = fp(xk,cell(2,k),cell(3,k),
    cell(4,k),cell(5,k),i)   ‘dydx
   cell(n2,i) = cell(i+1,k) + 
    hh*cell(n3,i)        ‘yt

 end for
 for i1 = 1 to neqn do
  cell(n4,i1) = fp(xh,cell(n2,1),cell(n2,2),
   cell(n2,3),cell(n2,4),i1)   ‘dyt
  cell(n2,i1) = cell(i1+1,k) + 
   hh*cell(n4,i1)         ‘yt
 end for

 for i2 = 1 to neqn do
  cell(n5,i2) = fp(xh,cell(n2,1),cell(n2,2),
   cell(n2,3),cell(n2,4),i2)   ‘dym
  cell(n2,i2) = cell(i2+1,k) + 
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   h*cell(n5,i2)         ‘yt
  cell(n5,i2) = cell(n5,i2) + 
   cell(n4,i2)       ‘dym = dym + dyt
 end for

 for i3 = 1 to neqn do
  cell(n4,i3) = fp(xk+h,cell(n2,1),cell(n2,2),
   cell(n2,3),cell(n2,4),i3)   ‘dyt
  cell(i3+1,k+1) = cell(i3+1,k) + h6*(cell(n3,i3)
   + cell(n4,i3) + 2*cell(n5,i3))
 end for

  cell(1,k+1) = cell(1,k) + h
 end for 

F-test to Determine Statistical Improvement in Regressions 0

This transform compares two equations from the same family to determine if the 
higher order provides a statistical improvement in fit.

Often it is unclear whether a higher order model fits the data better than a lower 
order. Equations where higher orders may produce better fits include: simple 
polynomials of different order, the sums of exponentials for transient response data, 
and the sums of hyperbolic functions for saturation ligand binding data.

F-TEST.XFM uses the residuals from two regressions to compute the sums of squares 
of the residuals, then creates the F statistic and computes an approximate P value for 
the significance level.

You can try this transform out on the provided sample graph, or run it on the 
residuals produced by your own regression sessions. Residuals are saved to the 
worksheet by the Regression Wizard.

1. To use the provided sample data and graph , open the F-test worksheet and 
graph in the XFMS.JNB notebook. The worksheet contains raw data in col-
umns 1 and 2, and curve fit results for the two competitive binding models in 
columns 3-5 and 6-8. The graph plots the raw data and the two curve fits. 
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2. To use your own data , enter the XY data to be curve fit in columns 1 and 2, 
respectively. Select the first curve fit equation and use it to fit the data, place the 
parameters, fit results and residuals in the first empty columns (3-5). Run the 
second curve fit and place the results in columns 6-8 (the default). If desired, 
create graphs of these results using the wizard.

3. Press F10 to open the User-Defined Transform dialog, then open the F-
TEST.XFM transform file. Specify n1 and n2, the number of parameters in the 
lower and higher order functions. In the example provided, these are 3 and 5, 
respectively. 

If necessary, specify cs1 and cs2, the column locations for the residuals of each 
curve fit, and cres, the first column for the two column output.

4. Click Execute. The F-test value and corresponding P value are placed into the 
worksheet. If P < 0.05, you can predict that the higher order equation provides a 
statistically better fit.

F-test Transform
 (F-TEST.XFM)

'***** Compare Two Nonlinear Curve Fits *****
'*****    with the F test      *****
'This transform uses the residuals from two 
'curve fits of functions from the same family 
'to determine if there is a significant 
'improvement in the fit provided by the higher 
'order fitting function.
'The F statistic is computed and used to obtain 
'an approximate P value.
'****** Input ******
n1=3  'number parameters for 1st function 
    '(fewest parameters)
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n2=5  ' number parameters for 2nd function
cs1 = 6  ' residual column for function 1
cs2 = 9  ' residual column for function 2
cres =10  ' first column of two results columns
'****** Program ******
N=size(col(cs1))
ss1=total(col(cs1)^2)
ss2=total(col(cs2)^2)
F = ((ss1-ss2)/ss2)*((N-n2)/(n2-n1))
'Approximate P value for F distribution
N1=n2-n1     ' A&S, Eq. 26.6.15, p. 947
N2=N-n2
x=(F^(1/3)*(1-2/(9*N2))-(1-2/(9*N1)))/
 sqrt(2/(9*N1)+F^(2/3)*2/(9*N2))
'Normal distribution approximation for P value
pi=3.1415926  ' A&S, Eq. 26.2.17, p 932
z=exp(-x^2/2)/sqrt(2*pi)
t=1/(1+.2316419*x)
p=z*(.31938153*t-.356563782*t^2+1.781477937
 *t^3-1.821255978*t^4+1.330274429*t^5)
'****** Output ******
col(cres)={" F = ", " p = "}
col(cres+1)={F,p}  

R2 for Nonlinear Regressions 0

You can use this transform to compute the coefficient of determination ( R2) for the 
results of a nonlinear regression. The original Y values and the Y data from the fitted 
curve are used to calculate R2. 

To save the fitted Y values of the nonlinear regression to the worksheet, use the 
Regression Wizard to save the Function results to the appropriate column (for this 
transform, column 3).

1. Place your original Y data in column 2 of the worksheet and the fitted Y data in 
column 3. If your data has been placed in other columns, you can specify these 
columns after you open the R2.XFM transform file. You can enter data into an 
existing or a new worksheet. 

2. Press F10 to open the User-Defined Transform dialog, then click the Open but-

ton and open the R2.XFM transform file in the XFMS directory. The R2 trans-
form appears in the edit window.

3. Click Execute. The R2 value is placed in column 4 of the worksheet, or in the 
column specified with the res variable.

R Squared
Transform (R2.XFM)

‘***Transform to Compute R Square (Coefficient ***
‘** of Determination) for Nonlinear Curve Fits **
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‘ Place your y data in y_col and the fitted y data
‘ in fit_col or change the column numbers to suit
‘ your data. Results are placed in column res.
y_col=2      ‘column number for y data
fit_col=3     ‘column number for fit results
res=4       ‘column number for R2 result
‘Define y and fitted y values
y=col(y_col)
yfit=col(fit_col)
‘************** CALCULATE R SQUARE **************
n=yfit-y
d=y-mean(y)
r2=1.0-total(n^2)/total(d^2)
‘****** PLACE R SQUARE VALUE IN WORKSHEET *******
col(res)={"R SQUARE",r2} 

Standard Deviation of Linear Regression Parameters 0

This transform computes linear 1st-order regression parameter values (slope and 
intercept) and their standard deviations using X and Y data sets of equal length.

To calculate 1st-order regression parameters and their standard deviations for 
XY data points:

1. Place the X data in column 1 of the worksheet and the Y data in column 2. If 
your data is in other columns, you can specify these columns after you open the 
STDV_REG.XFM transform file. You can enter data into an existing worksheet 
or a new worksheet.

2. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the STDV_REG.XFM transform file in the XFMS directory. If 
necessary, change the x_col, y_col, and res variables to the correct column num-
bers.

3. Click Execute. The results are placed in columns 3 and 4, or in the columns 
specified by the res variable.

Standard Deviation
Regression
Transform

(STDV_REG.XFM)

‘** Transform to Compute Standard Deviations of **
‘******** Linear Regression Coefficients *********’
‘Place your x data in x_col and y data in y_col or
‘ change the column numbers to suit your data.
‘ Results are placed in columns res and res+1.
x_col=1      ‘column number for x data
y_col=2      ‘column number for y data
res=3       ‘first results column
x=col(x_col)    ‘Define x values
y=col(y_col)    ‘Define y values
‘********** CALCULATE PARAMETER VALUES **********
n=size(col(x_col))  ‘n must be > 2
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mx=mean(x)
my=mean(y)
sumxx=total(x*x)
sumyy=total(y*y)
sumxy=total(x*y)
a1=(sumxy-n*mx*my)/(sumxx-n*mx*mx)  ‘slope
a0=my-a1*mx             ‘intercept
‘**** CALCULATE PARAMETER STANDARD DEVIATIONS ****
sregxy=if(n>2,sqrt((sumyy-n*a0*my-a1*sumxy)/(n-2)) ,0)
s0=sregxy*sqrt(sumxx/(n*(sumxx-n*mx*mx))) ‘SD a0
s1=sregxy/sqrt(sumxx-n*mx*mx)       ‘SD a1
‘********** PLACE RESULTS IN WORKSHEET **********
col(res)={"n","INTERCEPT","SLOPE","STD DEV INT ",
 "STD DEV SLOPE"}
col(res+1)=if(n>2,{n,a0,a1,s0,s1},{"n <= 2"}) 

Graphing Transform Examples 0

The graph transform examples are provided to show you how transform equations 
can manipulate and calculate data to create complex graphs. 

Each of the following descriptions provide instructions on how to use SigmaPlot to 
create graphs. Most of these graphs, however, are already set up as sample graphs. If 
you use the provided worksheet and graphs with the corresponding transform files, 
SigmaPlot will automatically create the graphs after you run the transform.

Control Chart for Fractional Defectives with Unequal Sample Sizes 0

This example computes the fraction of defectives p for a set of unequally sized 
samples using their corresponding numbers of defects, the control limits for p, and 
data for the upper and lower control lines.

This transform contains examples of the following transform functions:

➤ stddev

➤ sqrt

To calculate and graph the fraction of defectives and control lines for given sample 
sizes and number of defects per sample, you can either use the provided sample data 
and graph or begin a new notebook, enter your own data and create your own graph 
using the data.

1. To use the provided sample data and graph, open the Control Chart worksheet 
and graph in the Control Chart section of the Transform Examples notebook. 
The worksheet appears with data in columns 1, 2, and 3. The graph page 
appears with an empty graph.
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2. To use your own data, place the sample sizes in column 1 and the corresponding 
number of defects data in column 2 of a new worksheet. If your data is in other 
columns, you can specify these columns after you open the CONTCHRT.XFM 
transform file. You can enter your data in an existing or a new worksheet.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton and open the CONTCHRT.XFM transform file in the XFMS directory. 
The Control Chart transform appears in the edit window.

4. Select Execute. The results are placed in columns 4 through 5 of the worksheet.

5. If you opened the Control Chart graph, view the graph page. The graph plots 
the fraction of defectives using a Line and Scatter plot with a Simple Straight 
Line style graphing column 3 as Y data versus the row numbers. The control 
lines are plotted as a Simple Horizontal Step Plot using columns 4 and 5 versus 
their row numbers. The mean line for the fractional defectives is drawn with a 
reference line. 

6. To create your own graph, create a Line and Scatter Plot, with a Simple Line 
style, then plot column 3 as Y data against the row numbers. Add an additional 
Line Plot using the Multiple Horizontal Step Plot style, plotting columns 4 and 
5 versus their two numbers, then add a reference line to plot the mean line for 
the fractional device.

For more information on creating graphs in SigmaPlot, see �Creating and Mod-
ifying Graphs� on page 161 in the SigmaPlot User�s Manual.  
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Control Chart
Transform

(CONTROL.XFM)

;Transform for Fraction Defective Control Chart
;with Unequal Sample Sizes
; This transform takes sample size and number of
; defectives returns the fraction of defectives
; and data for upper and lower control limit lines
; Place the sample size data in n_col and the
; number of defects in def_col, or change the
; column numbers to suit your data. Fraction
; defective results are placed in the percent_col
; column, and the data for the control lines is
; placed in columns cl and cl+1.
n_col=1    ‘sample size column
def_col=2   ‘number of defectives column
percent_col=3 ‘fraction defective results column
cl=4     ‘first results column for control
       ‘limit line data
‘********* CALCULATE FRACTION DEFECTIVE **********
n=col(n_col)        ‘sample sizes
def=col(def_col)      ‘defectives
col(p_col)=def/n      ‘fraction defective
pbar=total(def)/total(n)
‘*********** CALCULATE CONTROL LIMITS ************
stddev = sqrt(pbar*(1 - pbar)/n)
ucl=pbar+3*stddev   ‘upper control limit
lcl=pbar-3*stddev   ‘lower control limit
lclt=if(lcl>=0,lcl,0) ‘truncated lower control
            ‘limit
‘**** DATA FOR CONTROL LIMIT LINE STEP CHART ****

Figure 6�3
Control Chart Graph
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col(cl)=ucl
col(cl+1)=lclt 

Cubic Spline Interpolation and Computation of First and Second Derivatives 0

This example takes data with irregularly spaced X values and generates a cubic spline 
interpolant. The CBESPLN1.XFM transform takes X data which may be irregularly 
spaced and generates the coefficients for a cubic spline interpolant. The 
CBESPLN2.XFM transform takes the coefficients and generates the spline 
interpolant and its two derivatives. 

The values for the interpolant start at a specified minimum X which may be less 
than, equal to, or greater than the X value of the original first data point. The 
interpolant has equally spaced X values that end at a specified maximum which may 
be less than, equal to, or greater than the largest X value of the original data. 

Note that this is not the same algorithm that SigmaPlot uses; this algorithm does not 
handle multiple valued functions, whereas SigmaPlot does.

To use the transform to generate and graph a cubic spline interpolant, you can either 
use the provided sample data and graph, or begin a new notebook, enter your own 
data and create your own graph using the data.

1. To use the provided sample data and graph, open the Cubic Spline worksheet 
and graph by double-clicking the graph page icon in the Cubic Spline section of 
the Transform Examples notebook. The worksheet appears with data in columns 
1 and 2 and the graph page appears with two graphs. The first graph plots the 
original XY data as a scatter plot. The second graph appears empty.

2. To use your own data, enter the irregularly spaced XY data into the worksheet. 
The X values must be sorted in strictly increasing values. The default X and Y 
data columns used by the transform are columns 1 and 2, respectively.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the CBESPLN1.XFM transform file in the XFMS directory. The 
first Cubic Spline transform appears in the edit window.

4. Move to the Input Variables heading. Set the X data column variable cx, the Y 
data column cy, the beginning interpolated X value xbegin, the ending interpo-
lated X value xend, and the X increments for the interpolated points xstep. A 
larger X step results in a smoother curve but takes longer to compute.

5. Enter the end condition setting iend for the interpolation.

6. You can use first, second, or third order conditions.

If you have only a few data points, you should try different orders to see which 
one you like the most. See the example for the effect of too low an order on the 
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first and second derivatives. 

7. Move to the RESULTS heading and enter the first column number for the 
results cr. This column for the beginning of the results block is specified in both 
transforms.

8. Click Execute to run the transform. When it finishes, press F10 then open the 
CBESPLN2.XFM transform file in the XFMS directory. Make sure that the cr 
variable is identical to the previous value, then click Execute.

9. If you opened the Cubic Spline graph, view the page. The first graph plots the 
original XY data as a scatter plot and the interpolated data as a second line plot 
by picking the cr column as the X column and cr+1 as the Y column. The sec-
ond graph plots the derivatives as line plots using the cr column versus the cr+2 
column and the cr column versus the cr+3 column.

10. To create your own graphs using SigmaPlot, create a Scatter Plot using a Simple 
Scatter style which plots the original data in columns 1 and 2 as XY pairs. Add 
an additional Line Plot using a Simple Spline Curve, then plot the cr column as 
the X column against the cr+1 column as the Y column. 

For more information on creating graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

1 end spline segments approach straight lines asymptotically

2 end spline segments approach parabolas asymptotically

3 end spline segments approach cubics asymptotically
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Cubic Spline
1 Transform

(CBESPLN1.XFM)

‘**** Cubic Spline Interpolation and Computation ****
‘       **** of Derivatives ****

‘This transform takes an x,y data set with increasing 
‘ordered x values and computes a cubic spline 
‘interpolation. The first and second derivatives of 
‘the spline are also computed.

‘Two transform files are run in sequence. This 
‘transform computes the spline coefficients. The
‘CBESPLN2.XFM transform computes the spline and two 
‘derivatives.
‘    ********** Input Variables **********

cx=1      ‘x data column number
cy=2      ‘y data column number
xbegin=-.5   ‘first x value for interpolation
xend=5     ‘last x value for interpolation
xstep=.025   ‘x interval for interpolation

‘There are 3 spline end conditions allowed:
‘  iend = 1: linear end conditions
‘  iend = 2: quadratic end conditions
‘  iend = 3: cubic end conditions

iend=1     ‘end condition = 1, 2, or 3 

‘    ************ RESULTS ************
‘The results are placed into a block of 9 columns
‘starting at column cr. Column cr MUST be 
‘specified identically in both transforms. Columns
‘cr to cr+3 contain the x mesh the spline and the 
‘first two derivatives. Columns cr+4 to cr+7
‘contain the a, b, c and d spline coefficients. 
‘Column cr+8 is for working variables.

cr=3      ‘1st column of results block

‘    ************ PROGRAM ************
cr4=cr+4    ‘column for "a" spline coefficients
cr5=cr+5    ‘column for "b" spline coefficients
cr6=cr+6    ‘column for "c" spline coefficients
cr7=cr+7    ‘column for "d" spline coefficients
cr8=cr+8    ‘working column 
n=size(col(cx))
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cell(cr8,1)=cx
cell(cr8,2)=cy
cell(cr8,3)=cr
cell(cr8,4)=xbegin
cell(cr8,5)=xend
cell(cr8,6)=xstep

‘compute S for n-2 rows
nm1=n-1
nm2=n-2
cell(cr8,7)=cell(cx,2)-cell(cx,1)     ‘dx1
cell(cr8,8)=(cell(cy,2)-cell(cy,1))
 /cell(cr8,7)*6              ‘dy1
for i=1 to nm2 do
 dx2=cell(cx,i+2)-cell(cx,i+1)      ‘dx2
 dy2=(cell(cy,i+2)-cell(cy,i+1))/dx2*6  ‘dy2
 cell(cr4,i)=cell(cr8,7)         ‘dx1
 cell(cr5,i)=2*(cell(cr8,7)+dx2)   ‘2(dx1+dx2)
 cell(cr6,i)=dx2             ‘dx2
 cell(cr7,i)=dy2-cell(cr8,8)      ‘dy2-dy1
 cell(cr8,7)=dx2            ‘dx1=dx2
 cell(cr8,8)=dy2            ‘dy1=dy2
end for

‘adjust first and last rows for end condition
dx11=cell(cx,2)-cell(cx,1)
dx1n=cell(cx,n)-cell(cx,nm1)
if iend=2 then
 cell(cr5,1)=cell(cr5,1)+dx11
 cell(cr5,nm2)=cell(cr5,nm2)+dx1n
else if iend = 3 then
 dx12=cell(cx,3)-cell(cx,2)
 cell(cr5,1)=(dx11+dx12)*(dx11+2*dx12)/dx12
 cell(cr6,1)=(dx12*dx12-dx11*dx11)/dx12
 dx2n=cell(cx,nm1)-cell(cx,nm2)
 cell(cr4,nm2)=(dx2n*dx2n-dx1n*dx1n)/dx2n
 cell(cr5,nm2)=(dx1n+dx2n)*(dx1n+2*dx2n)/dx2n
end if
end if

‘solve the tridiagonal system
‘first reduce
for j = 2 to nm2 do
 jm1=j-1
 cell(cr4,j)=cell(cr4,j)/cell(cr5,jm1)
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 cell(cr5,j)=cell(cr5,j)-cell(cr4,j)*cell(cr6,jm1)
 cell(cr7,j)=cell(cr7,j)-cell(cr4,j)*cell(cr7,jm1)
end for

‘ next back substitute
cell(cr7,nm1)=cell(cr7,nm2)/cell(cr5,nm2)
for k =nm2-1 to 1 step -1 do
  cell(cr7,k+1)=(cell(cr7,k)-cell(cr6,k)*
   cell(cr7,k+2))/cell(cr5,k)
end for

‘ specify the end conditions

if iend = 1 then        ‘linear ends
 cell(cr7,1)=0.0
 cell(cr7,n)=0.0
else if iend = 2 then     ‘quadratic ends
 cell(cr7,1)=cell(cr7,2)
 cell(cr7,n)=cell(cr7,nm1)
else if iend = 3 then     ‘cubic ends
 cell(cr7,1)=((dx11+dx12)*cell(cr7,2)-
  dx11*cell(cr7,3))/dx12
 cell(cr7,n)=((dx2n+dx1n)*cell(cr7,nm1)-
  dx1n*cell(cr7,nm2))/dx2n
end if
end if
end if
‘ compute coefficients of cubic polynomial
for m = 1 to nm1 do
 mp1=m+1
 h=cell(cx,mp1)-cell(cx,m)
 cell(cr4,m)=(cell(cr7,mp1)-cell(cr7,m))/(6*h) ‘a(i)
 cell(cr5,m)=cell(cr7,m)/2           ‘b(i)
 cell(cr6,m)=((cell(cy,mp1)-cell(cy,m))/h)-
  ((2*h*cell(cr7,m)+h*cell(cr7,mp1))/6) ‘c(i)
end for

Cubic Spline 2
Transform

(CBESPLN2.XFM)

‘********** Spline Generation **********
‘Run this transform after you run CBESPLN1.XFM. 
‘Make sure to enter the same results column
‘number value cr as in CBESPLN1.XFM.

‘    ********** Input Variables **********

cr=3 ‘1st column of results block, contains
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   ‘spline x mesh. This must be the same
   ‘value as in CBESPLN1.XFM.

‘    ************ PROGRAM ************
cr1=cr+1  ‘column for spline values
cr2=cr+2  ‘column for 1st derivative of spline
cr3=cr+3  ‘column for 2nd derivative of spline
cr4=cr+4  ‘column for "a" spline coefficients
cr5=cr+5  ‘column for "b" spline coefficients
cr6=cr+6  ‘column for "c" spline coefficients
cr8=cr+8  ‘working column
xbegin=cell(cr8,4)
xend=cell(cr8,5)
xstep=cell(cr8,6)
cx=cell(cr8,1)
cy=cell(cr8,2)

n=size(col(cx))
x1end=int((xend-xbegin)/xstep)+1
cell(cr8,9)=1         ‘index of x value
x=col(cx)
f(a,b,c,y,dxx)=y+dxx*(c+dxx*(b+dxx*a))
f1(a,b,c,dxx)=c+dxx*(2*b+dxx*(3*a))
f2(a,b,dxx)=2*b+6*a*dxx

for u1 = 1 to x1end do
 u=xbegin+(u1-1)*xstep
 cell(cr,u1)=u      ‘put u value in col cr
 xj=cell(cr8,9)
 if u <= x[n] then
  if u <= x[xj+1] then  ‘test u <= x(i+1)
  dx=u-x[xj]       ‘dx
   cell(cr1,u1)=f(cell(cr4,xj),cell(cr5,xj),
    cell(cr6,xj),cell(cy,xj),dx)
   cell(cr2,u1)=f1(cell(cr4,xj),
    cell(cr5,xj),cell(cr6,xj),dx)
   cell(cr3,u1)=f2(cell(cr4,xj),cell(cr5,xj),dx)
 else
  for j1 = 1 to n do ‘start search loop
  if j1>1 then
  if u <= x[j1] then
  if u > x[j1-1] then      
  xj1=j1-1
  dx1=u-x[xj1]    ‘dx
  cell(cr1,u1)=f(cell(cr4,xj1),cell(cr5,xj1),
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   cell(cr6,xj1),cell(cy,xj1),dx1)
  cell(cr2,u1)=f1(cell(cr4,xj1),cell(cr5,xj1),
   cell(cr6,xj1),dx1)
  cell(cr3,u1)=f2(cell(cr4,xj1),
   cell(cr5,xj1),dx1)
  cell(cr8,9)=j1-1
  end if
  end if
  end if
 end for      ‘end search loop
  end if
  else
 xj2=xj
 dx2=u-x[xj2]
 cell(cr1,u1)=f(cell(cr4,xj2),cell(cr5,xj2),
  cell(cr6,xj2),cell(cy,xj2),dx2)
 cell(cr2,u1)=f1(cell(cr4,xj2),cell(cr5,xj2),
  cell(cr6,xj2),dx2)
 cell(cr3,u1)=f2(cell(cr4,xj2),cell(cr5,xj2),dx2)
 end if
end for 

Fast Fourier Transform 0

The Fast Fourier Transform converts data from the time domain to the frequency 
domain. It can be used to remove noise from, or smooth data using frequency-based 
filtering. Use the fft function to find the frequency domain representation of your 
data, then edit the results to remove any frequency which may adversely affect the 
original data. 

The Fast Fourier Transform uses the following transform functions:

➤ fft

➤ invfft

➤ real

➤ img

➤ complex

➤ mulcpx

➤ invcpx

The Fast Fourier Transform operates on a range of real values or a block of complex 
values. For complex values there are two columns of data. The first column contains 
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the real values and the second column represents the imaginary values. The 
worksheet format of a block of complex numbers is:

where r values are real elements, and i values are imaginary elements. In transform 
language syntax, the two columns {{r 1, r2, ... rn},{i1, i2, ... in}} are written as: 

block({r 1, r 2, ... r n},{i 1, i 2, ... i n}) 

This function works on data sizes of size 2 n numbers. If your data set is not 2 n in 
length, the fft function pads 0 at the beginning and end of the data range to make the 
length 2n. A procedure for unpadding the results is given in the example Smoothing 
with a Low Pass Filter  on page 100.

The fft function returns a range of complex numbers. The Fast Fourier Transform is 
usually graphed with respect to frequency. To produce a frequency scale, use the 
relationship:

f=fs*(data(0,n/2)-1)/n

where fs is the sampling frequency. The example transform POWSPEC.XFM. 
includes the automatic generation of a frequency scale (see page 95).

The Fast Fourier Transform operates on data which is assumed to be periodic over 
the interval being analyzed. If the data is not periodic, then unwanted high frequency 
components are introduced. To prevent these high frequency components from 
occurring, windows can be applied to the data before using the fft transform. The 
Hanning window is a cosine function that drops to zero at each end of the data. The 
example transform POWSPEC.XFM includes the option to implement the Hanning 
window (see page 95).

Using the
Block Function

To return the full fft data to the worksheet:

1. First assign the data you want to filter to column 1 of the worksheet. You can 
generate the data using a transform, or use your own measurements.

2. Press F10 to open the User-Defined Transforms dialog, then click the New but-
ton to start a new transform.

r1 i1

r2 i2

.... ....

rn in
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3. Type the following transform in the edit window:

x=col(1)    ’real data
tx=fft(x)   ’compute the fft
block(2)=tx  ’place real fft data back in col(2)
         ’place imaginary fft data in col(3)

4. Select Execute. The results are placed starting one column over from the original 
data. 

Computing Power
Spectral Density

The example transform POWSPEC.XFM uses the Fast Fourier Transform function, 
then computes the power spectral density, a frequency axis, and makes optional use 
of a Hanning window. 

To calculate and graph the power spectral density of a set of data, you can either use 
the provided sample data and graph, or begin a new notebook, enter your own data 
and create your own graph using the data.

1. To use the sample worksheet and graph, open the Power Spectral Density work-
sheet and graph by double-clicking the graph page icon in the Power Spectral 
Density section of the Transform Examples notebook. Data appears in column 1 
of the worksheet, and two graphs appear on the graph page. The top graph 
shows data generated by the sum of two sine waves plus Gaussian random noise. 
The data is represented by:

f(t)=sin(2*pi*f1*t)+0.3*sin(2*pi*f2*t)+g(t)

where f1=10 cycles/sec (cps), f2=100cps, and the Gaussian random noise has 
mean 0 and standard deviation of 0.2. The lower graph is empty. 

2. To use your own data, place your data in column 1. If your data is in a different 
column, specify the new column after you open the POWSPEC.XFM transform 
file.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open POWSPEC.XFM transform file in the XFMS directory. The 
Power Spectral Density transform appears in the edit window.  

Σ To use this transform, the Trigonometric Units must be set to Radians.

4. Select Execute. Since the frequency sampling value (fs) is nonzero, a frequency 
axis is generated in column 2 and the power spectral density data in column 3. 

5. If you opened the Power Spectral Density graph, view the graph page. Two 
graphs appear on the page. The top graph plots the data generated by the sum of 
two sine waves plus Gaussian random noise using a Line Plot with Simple 
Straight Line style graphing column 1 versus row numbers. The lower graph 
plots the power spectral density using a Line Plot with a Simple Straight Line 
style, graphing column 2 as the X data (frequency), and column 3 as the Y data.  
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6. To plot your own data using SigmaPlot, choose the Graph menu Create Graph 
command, or select the Graph Wizard from the toolbar. Create a Line Plot with 
a Simple Straight Line style plotting your original data versus row numbers by 
choosing Single Y data format. If you set the frequency sampling value (fs) to 
nonzero, create a Line Plot with a Simple Straight Line style, graphing columns 
2 and 3 using XY Pair data format. Otherwise, create a Line Plot with a Simple 
Straight Line style plotting column 3 (power spectral density) versus row num-
bers by choosing Single Y data format.

The power spectral density plot of the signal f(t) shows two major peaks at the 
two frequencies of the sine waves (10cps and 100cps), and a more or less con-
stant noise level in between.  

For more information on how to create graphs in SigmaPlot, see the SigmaPlot 
User�s Manual.

The Power Spectral
Density Transform
(POWSPEC.XFM)

‘   This transform computes the power spectral ‘   density 
(psd) of data in column ci and places it
‘   in column co.
‘   If a nonzero sampling frequency fs is specified
‘   then a frequency axis is placed in column co
‘   with the psd in the next adjacent column.
‘   If han=1 then a Hanning window is applied to the
‘   padded data.
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Power Spectral
Density Example Graph
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sine waves plus Gaussian
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‘   Set Trigonometric Units to Radians
‘ Input
ci=1   ‘input column number
co=2   ‘first output column number
fs=10  ‘sampling frequency (produces frequency axis
     ‘ if fs>0)
han=1  ‘Hanning window (1=use, 0=don’t use)
‘ Program
pi=3.1415926
x1=col(ci)
if han=1 then      ‘use Hanning window
 n=size(x1)
 nlog2=log(n)/log(2)  ‘pad data if necessary
 powup=int(nlog2)
 intup1=if(nlog2-powup<1e-14, 2^powup, 2^(powup+1))
 rl=if(mod(n,2)>0, (intup1-n+1)/2, (intup1-n+2)/2
 ru=if(mod(n,2)>0, intup1-rl, intup1-r1+1)
 x=if(rl-1>0, if(intup1-ru>0, {data(0,0,rl-1), x1,
data(0,0,intup1-ru)},{data(0,0,rl),x1}),
   if(intup1-ru>0, {x1,data,(0,0,intup1-ru)}, {x1}))
 w=.5*(1-cos(2*pi*data(0,intup1-1)/(intup1-1)))
 xf=w*x        ‘multiply padded data by window
else
  xf=x1
end if

tx=fft(xf)          ‘fft of data
nf=size(tx)/4        ‘half the zero padded
               ‘data length
spec=real(tx)^2+img(tx)^2  ‘power spectral density
spechalf=spec[data(1,nf+1)] ‘half the symmetric psd 
               ‘data
f=fs*data(0,nf)/(2*nf)    ‘frequency axis

‘ Output
col(co)=if(fs>0,f,spechalf)
col(co+1)=if(fs>0,spechalf)

Kernel Smoothing The example transform SMOOTH.XFM smooths data by convolving the Fast 
Fourier Transform of a triangular smoothing kernel together with the fft of the data. 
Smoothing data using this transform is computationally very fast; the number of 
operations is greatly reduced over traditional methods, and the results are 
comparable. To increase the smoothing, increase the width of the triangular 
smoothing kernel. 
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To calculate and graph the smoothed data, you can either use the provided sample 
data and graph, or begin a new notebook, enter your own data, and create your own 
graph using the data.

1. To use the sample worksheet and graph, open the Kernel Smoothing worksheet 
and graph by double-clicking the graph page icon in the Kernel Smoothing sec-
tion of the Transform Examples notebook. Data appears in columns 1 through 
4, 6, and 7 of the worksheet, and two graphs appear on the graph page. The first 
graph has two plots, the signal, and the signal with noise distortion. Column 1 
contains the X data, column 2 contains the Y data for the signal, and column 3 
contains the Y data for the signal and the noise distortion. The lower graph is 
empty. 

2. To use your own data, place your data in columns 1 through 2. If your data is in 
other columns, specify the new columns after you open the SMOOTH.XFM 
transform file. If necessary, specify a new column for the results. 

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open SMOOTH.XFM transform file in the XFMS directory. The Ker-
nel Smoothing transform appears in the edit window.

Σ To use this transform, make sure the Insert mode is turned off.

4. Select Execute. The results are placed in column 5 unless you specified a differ-
ent column in the transform. 

5. If you opened the Kernel Smoothing graph, view the graph page. Two graphs 
appear on the page. The first graph has two plots, the signal, and the signal with 
noise distortion. The Line Plot with a Multiple Straight Line style graphs col-
umn 1 as the X data, column 2 as the Y data for the signal, and column 3 as the 
Y data for the signal and the noise distortion. The lower Line Plot with a Simple 
Straight Line style plots column 1 as the X data, and column 5 as the Y data 
using XY Pairs data format.

6. To plot your own data using SigmaPlot, choose the Graph menu Create Graph 
command, or select the Graph Wizard from the toolbar. Create a Line Plot with 
a Multiple Straight Line style using X Many Y data format, plotting column 1 as 
the X data, column 2 as the Y data for the signal, and column 3 as the Y data for 
the signal and the noise distortion. Create a second Line Plot graph with a Sim-
ple Straight Line style using the data in columns 1 and 5, graphing column 1 as 
the X data and column 5 as the Y data using XY Pairs data format. 
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For more information on how to create graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

The Kernel
Smoothing
Transform

(SMOOTH.XFM)

' Kernel Smoothing
' This transform smooths data using kernel smoothing

' Input
ci=3     ' input column number
co=5    ' output column number
r=10    ' percentage smoothing

' Program
x=col(ci)    ' data
n1=size(x)
tx=fft(x)     ' fft of data
nx=size(tx)/2
n=if(int(r*nx/200)>0, int(r*nx/200), 1)
' generate triangular smoothing kernel
lt={data(n,0,-1), data(0,0,nx-2*n-2), data(0,n)}
lt1=lt/total(lt)
tk=fft(lt1)         ' fft of kernel
td=mulcpx(tk,tx)   ' convolve kernel and data
sd=invfft(td)      ' transform back to time domain
tsd=real(sd)      ' normalize data
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Figure 6�6
Kernel Smoothing Graph

The top graph shows two
plots: the signal, and the

signal plus noise distortion.
The bottom graph is the
kernel smoothing of the

signal with smoothing
set at 10%.
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' Output
ru=if(mod(n1,2)>0, (nx-n1+1)/2, (nx-n1+2)/2)
' strip out padded channels
rl=if(mod(n1,2)>0, nx-ru, nx-ru+1)
tsd1=tsd[data(ru,rl)]
col(co)=tsd1  ' save smoothed data to worksheet

Smoothing with a
Low Pass Filter

The Low Pass Filter transform smooths data by eliminating high frequencies. Use 
this transform in contrast to the Kernel Smoothing transform which smooths data by 
augmenting some frequencies while minimizing others. The transform statements 
describing how the low pass filter works are:

x=col(1)    ‘the data to smooth
f=5       ‘number of channels to eliminate

tx=fft(x)       ‘fft of data
r=data(1,size(tx)/2) ‘total number of channels
mp=size(tx)/4     ‘get the midpoint
           ‘remove the frequencies
td=if( r<mp-f or r>mp+1+f,tx,0)
sd=invfft( td )    ‘convert back to time domain

col(2)=real(sd)    ‘save smoothed data to worksheet

The LOWPASS.XFM transform expresses f as a percentage for ease of use. As the 
value of f increases, more high frequency channels are removed. Note that this is a 
digital transform which cuts data at a discrete boundary. In addition, this transform 
does not alter the phase of the data, which makes it more accurate than analog 
filtering. A high pass or band pass filter can be constructed in the same manner. 

To calculate and graph the smoothing of a set of data using a low pass filter, you can 
either use the provided sample data and graph, or begin a new notebook, enter your 
own data, and create your own graph using the data.

1. To use the sample worksheet and graph, open the Low Pass Smoothing work-
sheet and graph by double-clicking the graph page icon in the Low Pass 
Smoothing section of the Transform Examples notebook. Data appears in col-
umns 1 through 4 of the worksheet, and two graphs showing plots appear on the 
graph page. Column 1 contains the X data, column 2 contains the Y data for the 
signal and the noise distortion, column 3 contains the X data, and column 4 
contains the Y data for the original signal. The top graph plots the signal plus 
the noise distortion; the bottom graph plots the signal. 

2. To use your own data, place your data in columns 1 through 2. If your data is in 
other columns, specify the new columns after you open the LOWPASS.XFM 
transform file. If necessary, specify a new column for the results. 
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3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open LOWPASS.XFM transform file in the XFMS directory. The Low 
Pass Filter transform appears in the edit window.

Σ To use this transform, make sure Insert mode is turned off.

4. Select Execute. The results are placed starting in column 5, unless you specified 
a different column in the transform. 

5. If you opened the Low Pass Smoothing graph, view the graph page. Two graphs 
appear. The top graph plots the signal plus the noise distortion, using a Line 
Plot with a Simple Straight Line style and XY Pairs data format graphing col-
umn 1 as the X data, column 2 as the Y data for the signal and the noise distor-
tion. The bottom graph displays two plots. A Scatter Plot with a Simple Scatter 
Style and XY Pairs data format, plots column 3 as the X data, and column 4 as 
the Y data for the original signal. A second Line Plot with a Simple Straight Line 
style using data in columns 1 and 5, plots column 1 as the X data and column 5 
as the Y data using XY Pairs data format.  

6. To plot your own data using SigmaPlot, choose the Graph menu Create Graph 
command, or select the Graph Wizard from the toolbar. Create two graphs. 
Graph the signal plus the noise distortion, using a Line Plot with a Simple 
Straight Line style and XY Pairs data format graphing column 1 as the X data, 
column 2 as the Y data for the signal and the noise distortion. Create a second 
graph with two plots. Plot the original signal using a Scatter Plot with a Simple 
Scatter Style and XY Pairs data format, plotting column 3 as the X data, and col-
umn 4 as the Y data for the original signal. Add a second Line Plot with a Simple 
Straight Line style using data in columns 1 and 5, plotting column 1 as the X 
data and column 5 as the Y data using XY Pairs data format. 
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For more information on how to create graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

Low Pass Filter
Transform

(LOWPASS.XFM)

‘ Lowpass Smoothing Filter
‘  This transform computes the fft, eliminates
‘  specified high frequencies and computes the
‘  inverse fft
‘ Input
ci =2         ‘ input data column number
co = 5         ‘ output lowpass filtered data
            ‘ column number
pr = 88        ‘ % high frequencies to remove
            ‘ (0-100)
‘ Program
x = col(ci)
n=size(x)
pr1=if(pr<0,0,if(pr>100,100,pr)) ‘ trap input pr
                 ‘ errors    
f=int((pr1/100)*mp)   ‘number of channels to
             ‘ eliminate
tx = fft(x)      ‘ fft of data
r = data(1,size(tx)/2) ‘ number of data + padded
            ‘ channels
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Low Pass Filter

Smoothing Graph

The top graph shows the
signal plus noise distortion.

The bottom graph shows the
signal and the low pass

filtering set at 88%.
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mp = size(tx)/4    ‘ mid point of symmetric
            ‘ channels
fc = if( r<mp-f+1 or r>mp+f ,1,0 )  ‘ eliminate high
                   ‘ frequencies
td = mulcpx(complex(fc),tx)
sd = invfft( td )    ‘ convert back to time domain

‘ Output
ru=if(mod(n,2)>0, (2*mp-n+1)/2, (2*mp-n+2)/2) 
             ‘ remove padded channels
rl=if(mod(n,2)>0, 2*mp-ru, 2*mp-ru+1)
col(co) = real(sd)[data(ru,rl)] 
             ‘ place results in worksheet
block(6,1)=tx
cell(8,1)= mp
cell(8,2)=f
cell(8,3)=pr1
cell(8,4)=n
col(9)=fc
col(10)=r
col(11)=real(tx)^2+img(tx)^2   ‘ PSD

Gain Filter Smoothing The GAINFILT.XFM transform example demonstrates gain filter smoothing. This 
method eliminates all frequencies with power spectral density levels below a specified 
threshold. The transform statements describing how gain filter smoothing works are:

P=4000       ‘psd threshold
x=col(1)      ‘data

tx=fft(x)         ‘compute fft of data
md=real(tx)^2+img(tx)^2  ‘compute sd
kc=if(md>P,1,0)      ‘remove frequencies with
             ‘psd<P
sd=mulcpx(complex(kc),tx) ‘remove frequency 
             ‘components from x
td=real( invfft(sd) )   ‘convert back to time domain
col(2)=td         ‘place results in worksheet

To calculate and graph the smoothing of a set of data using a gain filter, you can 
either use the provided sample data and graph, or begin a new notebook, enter your 
own data, and create your own graph using the data.

1. To use the sample worksheet and graph, open the Gain Filter Smoothing work-
sheet and graph by double-clicking the graph page icon in the Gain Filter 
Smoothing section of the Transform Examples notebook. Data appears in col-
umns 1 through 3 of the worksheet, and two graphs showing plots, and one 
blank graph appear on the graph page. Column 1 contains the Y data for the sig-
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nal plus noise, column 2 contains the X data and column 3 contains the Y data 
for the power spectral density graph. The top graph plots the signal plus the 
noise distortion; the middle graph plots the power spectral density. 

2. To use your own data, place your data in column 1. If your data is in a different 
column, specify the new column after you open the GAINFILT.XFM transform 
file. If necessary, specify a new column for the results. 

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open GAINFILT.XFM transform file in the XFMS directory. The Gain 
Filter transform appears in the edit window.

Σ To use this transform, make sure Insert mode is turned off.

4. Select Execute. The results are placed in column 5 unless you specified a differ-
ent column in the transform. 

5. If you opened the Gain Filter Smoothing graph, view the graph page. Three 
graphs appear. The top graph plots the signal plus the noise distortion using a 
Line Plot with a Simple Straight line style and Single Y data format, plotting col-
umn 1 as the Y data for the signal plus noise. The middle graph plots the power 
spectral density using a Line Plot with a Simple Straight Line style and XY Pairs 
data format, plotting column 2 as the X data and column 3 as the Y data for the 
power spectral density graph. The lower graph is a plot of the gain filtered signal, 
using a Line Plot with a Simple Straight Line style, and single Y data format 
from column 5. 

6. To plot your own data using SigmaPlot, choose the Graph menu Create Graph 
command, or select the Graph Wizard from the toolbar. Create two graphs. Plot 
the signal plus the noise distortion using a Line Plot with a Simple Straight line 
style and Single Y data format, plotting column 1 as the Y data for the signal 
plus noise. Plot the gain filtered signal using a Line Plot with a Simple Straight 
Line style, and single Y data format from column 5. 
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For more information on how to create graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

Gain Filter Transform
(GAINFILT.XFM)

‘ Gain Filtering
‘   This transform filters data by removing
‘   frequency components with power spectral density
‘   magnitude less than a specified value
‘ Input
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Gain Filter

Smoothing Graph

The top graph shows the
signal plus noise distortion.

The middle graph shows the
power spectral density of the
signal plus noise distortion.
The lower graph shows the

gain filter smoothed data.
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ci = 1     ‘ input data column number
co = 5     ‘ output column number
P = 4000    ‘ psd threshold

‘ Program
x=col(ci)
n=size(x)
tx = fft(x)          ‘ compute fft
md = real(tx)^2 + img(tx)^2  ‘ compute psd
kc = if(md > P,1,0)  ‘ find frequencies with psd < P
sd = mulcpx(complex(kc),tx)  ‘ remove frequency
               ‘ components from x
td = real( invfft(sd) ) ‘convert back to the time
            ‘ domain
nx=size(tx)/2      ‘ remove padded channels
ru=if(mod(n,2)>0, (nx-n+1)/2, (nx-n+2)/2)
rl=if(mod(n,2)>0, nx-ru, nx-ru+1)

‘ Output
col(co) = td[data(ru,rl)] ‘ place results in worksheet
 

Frequency Plot 0

This transform example creates a frequency plot showing the frequency of the 
occurrence of data in the Y direction. Data is grouped in specified intervals, then 
horizontally plotted for a specific Y value. Parameters can be set to display symbols 
that are displaced a specific distance from each other or that touch or overlap. You 
can also plot the mean value of each data interval. This transform example shows 
overlapping symbols which give the impression of data mass. 

To calculate and graph the frequency of the occurrence of a set of data, you can either 
use the provided sample data and graph, or begin a new notebook, enter your own 
data and create your own graph using the data.

1. To use the sample worksheet and graph, open the Frequency Plot worksheet and 
graph by double-clicking the graph page icon in the Frequency Plot section of 
the Transform Examples notebook. Data appears in columns 1 through 3 of the 
worksheet, and an empty graph appears on the graph page.

2. To use your own data, place your data in columns 1 through 3. You can put data 
in as many or as few columns as desired, but if you use the sample transform you 
must change the X locations of the Y values in the second line under the Input 
heading in the transform file to reflect the number of data columns you are 
using. If your data is in other columns or more than three columns, specify the 
new columns after you open the FREQPLOT.XFM transform file.

Enter the tick labels for the X axis in a separate column, and specify tick labels 
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from a column using the Tick Labels Type drop-down list in the Tick Labels 
panel in Graph Properties Axis tab.  

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the FREQPLOT.XFM transform file in the XFMS directory. The 
Frequency Plot transform appears in the edit window.

4. Select Execute. The results are placed starting one column over from the original 
data.

5. If you opened the sample Frequency Plot graph, view the graph page. A Scatter 
Plot appears plotting columns 5 and 6, 7 and 8, and 9 and 10 as three separate 
XY Pair plots. The lines passing through each data interval is a fourth Line Plot 
with a Simple Straight Line style plotting columns 11 and 12 as an XY pair, rep-
resenting the mean value of each data interval. The X axis tick marks are gener-
ated by the transform. The axis labels are taken from column 13.

6. To create your own graph using SigmaPlot, make a graph with three Scatter 
Plots with Simple Scatter styles. Plot each consecutive result column pair as XY 
pair scatter plots. If the mean line option is active in the transform, plot the last 
consecutive result column pair as a XY pair Line Plot with Simple Straight Line 
style. Use labels typed into a worksheet column as the X axis tick labels. 

For more information on how to create graphs in SigmaPlot, see the SigmaPlot 
User�s Manual.
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Frequency
Plot Transform

(FREQPLOT.XFM)

‘     *********Frequency Plot********
‘     *********FREQPLOT.XFM*********
‘          **7-26-95**

‘This transform creates frequency plots and mean bars ‘of 
multiple y data columns

‘It uses data in the first columns of the worksheet and 
‘creates column pairs for graphing

‘     ********Procedure - Data Entry*******

‘1. TURN INSERT OFF
‘2. Enter y data groups into columns in the worksheet 
‘starting with column 1
‘3. Select a symbol diameter d (try 0.05 to 0.10 in)
‘4. Specify the x locations for the groups (1,2,3,... 
‘are typically used since ticks are usually labeled)
‘Important! Make sure that the number of numbers in 
‘x={1,2,...} equals the number of y data columns
‘5. Enter the width of your graph wg in inches (double 
‘click on graph to determine its width)
‘6. Enter the x range of your graph (usually 1 + number 
‘of groups)
‘7. Enter the vertical data interval w into which data 
‘points will be grouped
‘8. Enter the first vertical data interval start value 
‘(e.g., 0 if the vertical range is 0 to 100)
‘9. Enter the horizontal distance fx between symbols 
‘(try 0.05, use negative value for overlap effect) 
‘10. Specify ml=1 if you want mean lines computed and 
‘ specify mean line width eml
‘11. Specify intvl=1, 2 or 3 to place the y data at the 
‘bottom, center or top of the vertical data interval
‘  ********Procedure - Graph********

‘1. Create x,y scatter plots for the column pairs
‘2. If mean lines are computed create an x,y line plot 
‘ with no symbols from the last two columns generated

‘      ********Input*******

d =.08‘size (diameter) of symbol (in)
x={1,2,3}‘x locations for groups of y
‘values(typically 1,2,3, etc.)
wg=5‘width of graph (in)
wd=4‘x range of graph (x maximum minus ‘x mininum)
fx=0.05‘horizontal distance between
‘symbols (fraction of symbol
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‘diameter)
w=1‘vertical data interval (y axis
‘units)
ys=0‘first vertical data interval
‘start value (y axis units)
intvl=3‘specifies y display position in w
           ‘interval(1=bottom,2=center,3=top)
ml=1‘include mean lines (0=no, 1=yes)
eml=.6‘width of mean line (x axis units)

‘      *********Program**********

cy=1‘first y group column number
colfi=size(x)
e=1e-18
wx=(1+fx)*d*wd/wg‘horizontal distance between
‘symbol centers (user units)
ypos=if(intvl=1,w,if(intvl=2,w/2,0))  ‘y display
         ‘position
for j = 1 to colfi do   ‘multiple column loop
coly=col(cy+j-1)-e
buckets=data(ys,max(coly)+w+e,w)
h=histogram(coly,buckets) ‘histogram of data
h0=if(h>0,h)   ‘histogram with zero values
   ‘excluded
buckets0=if(h>0,buckets)  ‘corresponding bucket values
hs0=sum(h0)
col(colfi+2*j+1)=lookup(data(1,total(h0)),sum(h0),buckets0)-
ypos   ‘y values
tem=lookup(data(1,total(h0)),sum(h0),h0)
col(colfi+2*j)=x[j]+ wx*(mod(data(1,size(tem)),tem)-(tem-1)/
2)‘x values
col(3*colfi+2,3*j-2,3*j)=if(ml>0,{x[j]-eml/2,x[j]+eml/2,0/
0})‘x values for mean lines
col(3*colfi+3,3*j-2,3*j)=if(ml>0,{1,1,0/0} *mean(col(j))‘y 
values for mean lines
end for 

Gaussian Cumulative Distribution from the Error Function 0

Rational approximations can be used to compute many special functions. This 
transform demonstrates a polynomial approximation for the error function. The 
error function is then used to generate the Gaussian cumulative distribution 
function. The absolute maximum error for the error function approximation is less 
than 2.5 x 10-5 (M. Abramowitz and L.A. Stegun, Handbook of Mathematical 
Functions, p. 299). 
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To calculate and graph the Gaussian cumulative distribution for given X values, you 
can either use the provided sample data and graph or begin a new notebook, enter 
your own data and create your own graph using the data.

1. To use the sample worksheet and graph, open the Gaussian worksheet and graph 
by double-clicking the graph page icon in the Gaussian section of the Transform 
Examples notebook. Data appears in column 1 of the worksheet and two empty 
graphs appear on the graph page.

2. To use your own data, place the X data in column 1. If your data has been placed 
in another column, you can specify the column after you open the 
GAUSDIST.XFM transform file.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the GAUSDIST.XFM transform file in the XFMS directory. The 
Gaussian Cumulative transform appears in the edit window.

4. Select Execute. The results are placed in column 2, or in the column specified by 
the res variable.

5. If you opened the sample Gaussian graph, view the graph page. A Line Plot 
appears with a spline curve in the first graph with column 1 as the X data versus 
column 2 as the distribution (Y) data (see Figure 6�10 on page 111). 

6. To create your own graph using SigmaPlot, make a Line Plot graph with a Sim-
ple Spline Curve. The spline curve plots column 1 as the X data versus column 2 
as the distribution (Y) data (see Figure 6�10 on page 111).

For more information on how to create graphs in SigmaPlot, see the SigmaPlot 
User�s Manual.

Gaussian Cumulative
Distribution on a
Probability Scale

The probability scale is the inverse of the Gaussian cumulative distribution function. 
When a Gaussian cumulative distribution function is graphed using the probability 
scale, the result is a straight line.

1. If you opened the sample Gaussian graph, view the graph page. A straight line 
plot appears in the second graph plotting the distribution data in column 3 
along a probability scale. 

2. To create your own graph using SigmaPlot, create a Line Plot with a Simple 
Straight Line using column 1 as your X data and column 3 as your Y data, and 
set the Y axis scale to Probability.

For information on how to create graphs in SigmaPlot, see the SigmaPlot User�s 
Manual. 
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Gaussian Distribution
(GAUSDIST.XFM)

‘*** Gaussian Cumulative Distribution Function ***
‘************** (C.D.F.) Transform ***************
‘ This transform takes x data and returns the
‘ results of a Gaussian Cumulative Distribution
‘ function
‘ Place your x data in x_col or change the column
‘ number to suit your data. Results are placed in 
‘ column res
x_col=1     ‘column for x data
res=2      ‘column for Gaussian Cumulative
        ‘Distribution values
x=col(x_col)  ‘define x values
‘*** CALCULATE POLYNOMIAL APPROXIMATION TO THE ***
‘**************** ERROR FUNCTION *****************
‘ You can place the functions erf(x) and terf(x)
‘ in the Transform Library to create user-defined
‘ functions for the error function.
erf(x)=1-(.3480242*terf(x)-.0958798*terf(x)^2
    +.7478556*terf(x)^3)*exp(-x^2)
terf(x)=1/(1+.47047*x)
erf1(x)=if(x<0,-erf(-x),erf(x))
‘** CALCULATE GAUSSIAN CUMULATIVE DISTRIBUTION **
‘******** AND PLACE RESULTS IN WORKSHEET ********
P(x)=(erf1(x/sqrt(2))+1)/2 ‘Gaussian C.D.F.

col(res)=P(x) 
col(res+1)=col(res)*100

Gaussian Cumulative Distribution Function
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Histogram with Gaussian Distribution 0

This transform calculates histogram data for a normally distributed sample, then uses 
the sample mean and standard deviation of the histogram to compute and graph a 
Gaussian distribution for the histogram data. 

The Histogram Gaussian transform uses examples of the following functions:

➤ gaussian

➤ histogram

➤ size

➤ [...] (array reference)

To calculate and graph a histogram and Gaussian curve for a normally distributed 
sample, you can either use the provided sample data and graph or begin a new 
notebook, enter your own data, and create your own graph using the data.

To use the sample worksheet and graph:

1. Open the Histogram Gaussian worksheet and graph by double-clicking the 
graph page icon in the Histogram Gaussian section of the Transform Examples 
notebook. The Histogram worksheet with data in column 1 and an empty graph 
page appears.

The data in the Histogram Gaussian worksheet was generated using the trans-
form:

 col(1) = gaussian(100,0,325,2)

To use your own data:

1. Place the sample in column 1 of the worksheet. If your data has been placed in 
another column, you can specify this column after you open the HIST-
GAUS.XFM transform file. You can enter the data into an existing or new work-
sheet.

2. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the HISTGAUS.XFM transform file in the XFMS directory. The 
Histogram with Gaussian Distribution transform appears in the edit window.

3. Select Execute. The results are placed in columns 2 through 5 of the worksheet, 
or in the columns specified by the res variable.

4. If you opened the Histogram Gaussian graph, view the graph page. A histogram 
appears using column 2 as X data versus column 3 as the Y data. The curve plots 
the Gaussian distribution using column 4 as X data versus column 5 as the Y 
data.

5. To create your own graph using SigmaPlot, create a simple vertical bar chart and 
set the bar widths as wide as possible. Add the Gaussian curve to the graph by 
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creating another plot using the data in column 4 as the X data and the data in 
column 5 as the Y data.

Histogram with
Gaussian Distribution

Transform
(HISTGAUS.XFM)

‘******* Transform for a Histogram with a *******
‘****** Superimposed Gaussian Distribution ******
‘ This transform can be used to create histogram
‘ values for a sample with a normal distribution
‘ and the data for a smooth Gaussian curve for the
‘ histogram
‘ Place your normally distributed sample data in
‘ x_col or change the column number to suit your
‘ data. Results are placed in columns res through
‘ rc+3.
x_col=1    ‘column number for sample data
res=2     ‘first results column
‘Set histogram range:
min=318    ‘left limit of histogram
max=334    ‘right limit of histogram
interval=1  ‘histogram interval
‘define source data:
x=col(x_col)
‘*********** GENERATE HISTOGRAM DATA ************
historange = data(min,max,interval)
h=histogram(x,historange)
int2=interval/2
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y=h[data(2,size(h)-1)]
‘***** PLACE HISTOGRAM XY DATA IN WORKSHEET *****
‘bar positions (x values):
col(res)=historange[data(1,size(historange)-1)]
 +int2
‘bar heights (y values):
col(res+1)= y
‘*** GENERATE GAUSSIAN DISTRIBUTION CURVE DATA ***
pi=3.1415926
m=mean(x)
s=stddev(x)
x1=data(m-3*s,m+3*s,6*s/20)
y1=exp(-((x1-m)/s)^2/2)/(sqrt(2*pi)*s)
‘**** PLACE GAUSSIAN CURVE DATA IN WORKSHEET *****
col(res+2)= x1
col(res+3)= y1*interval*total(y) 

Linear Regression with Confidence and Prediction Intervals 0

This transform computes the linear regression and upper and lower confidence and 
prediction limits for X and Y columns of equal length. A rational polynomial 
approximation is used to compute the t values used for these confidence limits. 

Figure 6�17 displays the sample Linear Regression graph with the results of the 
LINREGR.XFM transform plotted. 

The LINREGR.XFM transform contains examples of these two functions:

➤ min

➤ max

To calculate and graph a linear regression and confidence and prediction limits for 
XY data points, you can either use the provided sample data and graph or begin a 
new notebook, enter your own data, and create your own graph using the data.

1. To use the provided sample data and graph, open the Linear Regression work-
sheet and graph by double-clicking the graph page icon in the Linear Regression 
section of the Transform Examples notebook. The worksheet appears with data 
in columns 1 and 2. The graph page appears with a scatter graph plotting the 
original data in columns 1 and 2.

2. To use your own data, place the X data in column 1 and the Y data in column 2. 
If your data has been placed in other columns, you can specify these columns 
after you open the LINREGR.XFM transform file. You can enter data into an 
existing or a new worksheet.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the LINREGR.XFM transform in the XFMS directory. The Lin-
ear Regression transform appears in the edit window. If necessary, change the 
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x_col, y_col, and res variables to the correct column numbers (this is not neces-
sary for the example Linear Regression worksheet data).

4. Change the Z variable to reflect the desired confidence level (this is not neces-
sary for the example Linear Regression worksheet data). 

5. Select Execute. The results are placed in columns 3 through 8, or in the columns 
specified by the res variable.

6. If you opened the Linear Regression graph, view the graph page. The original 
data in columns 1 and 2 is plotted as a scatter plot. The regression is plotted as a 
solid line plot using column 3 as the X data versus column 4 as the Y data, the 
confidence limits are plotted as dashed lines using column 3 as a single X col-
umn versus columns 7 and 8 as many Y columns, and the prediction limits are 
plotted as dotted lines using column 3 as a single X column versus columns 7 
and 8 as many Y columns.

7. To create your own graph in SigmaPlot, create a Scatter Plot with a Simple 
Regression, plotting column 1 against column 2 as the symbols and using col-
umn 3 plotted against column 4 as the regression. Add confidence and predic-
tion intervals using column 3 as the X column and columns 7 and 8 as the Y 
columns. 

For more information on creating graphs in SigmaPlot, see the SigmaPlot User�s 
Manual. 

Linear Regression
Transform

(LINREGR.XFM)

‘*** Transform to Compute a Linear Regression ***
‘**** with Confidence & Prediction Intervals ****
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‘ Place your x data in x_col and y data in y_col or
‘ change the column numbers to suit your data.
‘ Results are placed in columns res through res+5.

x_col=1      ‘column number for x data
y_col=2      ‘column number for y data
res=3       ‘first results column

x=col(x_col)    ‘Define x values
y=col(y_col)    ‘Define y values

‘Define z value for 95% confidence interval
‘for 99% confidence interval, use z=2.576

z=1.96       ‘z for 95% confidence
‘z=2.576      ‘z for 99% confidence
;********* DEFINE REGRESSION PARAMETERS **********
n=size(x)         ‘number of data points
v=n-2           ‘n must be > 2
xbar=mean(x)        ‘mean of x
denom=total((x-xbar)^2)  ‘sum of sqs about mean
alpha=total(x^2)/(n*denom) ‘1,1 coeff of (X'X)^-1
beta=-xbar/denom      ‘1,2 coeff of (X'X)^-1
delta=1/denom       ‘2,2 coeff of (X'X)^-1
r1=total(y)        ‘1st row of X'Y
r2=total(x*y)       ‘2nd row of X'Y
b0=alpha*r1+beta*r2    ‘intercept parameter
b1=beta*r1+delta*r2    ‘slope parameter
‘*** CALCULATE REGRESSION AND CONFIDENCE DATA ***
‘Regression data
xreg=data(min(x),max(x),(max(x)-min(x))/20)
yreg=b0+b1*xreg

‘Compute t value
t123=z+(z^3+z)/(4*v)+(5*z^5+16*z^3+3*z)/(96*v^2)
t4=(3*z^7+19*z^5+17*z^3-15*z)/(384*v^3)
t5=79*z^9+776*z^7+1482*z^5-1920*z^3-945*z
t=t123+t4+t5/(92160*v^4)

‘Estimate of sigma
s=sqrt(total(((y-(b0+b1*x))^2))/v)
‘Confidence Limit data
term=alpha+2*beta*xreg+delta*xreg^2
conf_lim=sqrt(term)
up_conf=yreg+t*s*conf_lim     ‘upper limit
low_conf=yreg-t*s*conf_lim    ‘lower limit
‘Prediction Intervals data
pred_lim=sqrt(1+term)
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up_pred=yreg+t*s*pred_lim ‘upper prediction limit
low_pred=yreg-t*s*pred_lim ‘lower prediction limit

‘******* PLACE REGRESSION AND CONFIDENCE *********
‘************** DATA IN WORKSHEET ****************
‘Regression
col(res)=xreg      ‘x values of regression line
col(res+1)=yreg     ‘y values of regression line

‘Confidence Interval
col(res+2)=up_conf  ‘upper confidence limit
col(res+3)=low_conf  ‘lower confidence limit

‘Prediction
col(res+4)=up_pred  ‘upper prediction limit
col(res+5)=low_pred  ‘lower prediction limit 

Low Pass Filter 0

This transform is a smoothing filter which produces a data sequence with reduced 
high frequency components. The resulting data can be graphed using the original X 
data.

To calculate and graph a data sequence with reduced high frequency components, 
you can either use the provided sample data and graph or begin a new notebook, 
enter your own data, and create your own graph using the data.

1. To use the provided sample data and graph, double-click the Low Pass Filter 
graph page icon in the Low Pass Filter section of the Transform Examples note-
book. The worksheet appears with data in columns 1 and 2. The graph page 
appears with two graphs. The first is a line graph plotting the raw data in col-
umns 1 and 2 (see Figure 6�11 on page 113). The second graph is empty.

2. To use your own data, place your Y data (amplitude) in column 2 of the work-
sheet, and the X data (time) in column 1. If your data is in other columns, you 
can specify these columns after you open the LOWPFILT.XFM file. You can 
enter your data in an existing or new worksheet.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the LOWPFILT.XFM transform file in the XFMS directory. The 
Low Pass Filter transform appears in the edit window.

4. Set the sampling interval dt (the time interval between data points) and the half 
power point fc values. The half power point is the frequency at which the 
squared magnitude of the frequency response is reduced by half of its magnitude 
at zero frequency.

5. If necessary, change the cy1 source column value and cy2 filtered data results to 
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the correct column numbers.

6. Select Execute to run the transform. Filtered data appears in column 3 in the 
worksheet, or in the worksheet column you specified in the transform. 

7. If you opened the Low Pass Filter graph, view the graph page. The second graph 
appears as a line graph plotting the smoothed data in columns 1 and 3.

8. To create your own graphs in SigmaPlot, create the first graph as a Line Plot 
with a Simple Spline Curve using the raw data in columns 1 and 2 as the X and 
Y data. Make the second Line Plot graph with a Simple Spline Curve using the 
data in column1 as the X data and the smoothed data in column 3 as the Y data.

For more information on creating graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

Low Pass
Filter Transform

‘**** First Order Low Pass Recursive Filter ****
‘This filter will smooth data by reducing 
‘frequency components above the half power point.
‘It generates the filtered output y(i) from the 
‘data x(i).

‘y(i) = a y(i-1) + (1 - a) x(i)

‘where a is computed from the specified half power
‘point fc.

‘     ********** Input **********

dt = .01  ‘sampling interval (sec)
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fc = 5   ‘half power point of filter (Hz) 
cy1 = 2  ‘column number for input data

‘    ********** RESULTS **********

cy2 = 3  ‘column number for filtered output

‘    ********** Program **********

pi=arccos(-1)
cos2pft = cos(2*pi*fc*dt)
a = 2-cos2pft - sqrt(cos2pft^2-4*cos2pft+3)
              ‘filter coefficient
cell(cy,1)=cell(cx,1)   ‘recursive filter
for i=2 to size(col(cx)) do
 cell(cy,i)=a*cell(cy,i-1)+(1-a)*cell(cx,i)
end for

Lowess Smoothing 0

Smoothing is used to elicit trends from noisy data. Lowess smoothing produces 
smooth curves under a variety of conditions 1. "Lowess" means locally weighted 
regression. Each point along the smooth curve is obtained from a regression of data 
points close to the curve point with the closest points more heavily weighted. 

The y value of the data point is replaced by the y value on the regression line. The 
amount of smoothing, which affects the number of points in the regression, is 
specified by the user with the parameter f. This parameter is the fraction of the total 
number of points that is used in each regression. If there are 50 points along the 
smooth curve with f = 0.2 then 50 weighted regressions are performed and each 
regression is performed using 10 points.

An example of the use of lowess smoothing for the U.S. wheat production from 1872 
to 1958 is shown in the figures below. The smoothing parameter f was chosen to be 

1. Visualizing Data, William S. Cleveland
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0.2 since this produced a good tradeoff between noisy undersmoothing and 
oversmoothing which misses some of the peak-and-valley details in the data.

1. To use the provided sample data and graph , open the Lowess Smoothing work-
sheet and graph in the Lowess Smoothing section of the Transform Examples 
notebook. The worksheet appears with data in columns 1, 2, and 3.

2. To use your own data, enter the XY data for your curve in columns 1 and 2, 
respectively. If your data has been placed in other columns, you can specify these 
columns after you open the LOWESS.XFM  transform file. Enter data into an 
existing or a new worksheet.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the LOWESS.XFM transform file in the XFMS directory. The 
Lowess transform appears in the edit window. 

4. Select Execute. The results are placed in column 3 of the worksheet, or in the 
column specified by the ouput variable.

5. If you opened the Lowess Smoothing graph, view the graph page. The smoothed 
curve is plotted on the second graph and both the orginal and smoothed data are 
plotted on the third.

If you want to plot your own results, create a line plot of column 1 versus col-
umn 3. 

For more information of creating graphs, see the SigmaPlot User�s Manual.

Lowess Smoothed U.S. Wheat Production
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LOWESS.XFM '******Lowess Smoothing Example******
x=col(1)
y=col(2)
f=0.2

'******Results******
col(3)=output

'******Program******
output=lowess(x,y,f)

Normalized Histogram 0

This simple transform creates a histogram normalized to unit area. The resulting data 
can be graphed as a bar chart. Histogram bar locations are shifted to be placed over 
the histogram box locations. The resulting bar chart is an approximation to a 
probability density function (see Figure 6�15 on page 122). 

To calculate and graph a normalized histogram sample, you can either use the 
provided sample data and graph or begin a new notebook, enter your own data, and 
create your own graph using the data.

1. To use the provided sample data and graph, open the Normalized Histogram 
worksheet and graph in the Normalized Histogram and Graph section of the 
Transform Examples notebook. The worksheet appears with data in column 1. 
The data is made up of exponentially distributed random numbers generated 
with the transform:

x = random(200,1,1.e−10,1)col(1) = −ln(x) 

The graph page appears with an empty graph.

2. To use your own data, place your data in column 1 of the worksheet. If your 
data has been placed in another column, you can specify this column after you 
open the NORMHIST.XFM transform file. You can enter data into an existing 
or new worksheet.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the NORMHIST.XFM transform file in the XFMS directory. 
The Normalized Histogram transform appears in the edit window. 

4. Select Execute. The results are placed in columns 2 and 3 of the worksheet, or in 
the columns specified by the res variable.

5. If you opened the Normalized Histogram graph, view the graph page. A histo-
gram appears using column 2 as X data versus column 3 as the Y data.

6. To create your own graph in SigmaPlot, create a Vertical Bar chart with simple 
bars, then set the bar widths as wide as possible. 
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For more information of creating bar charts and setting bar widths, see the SigmaPlot 
User�s Manual. 

Normalized
Histogram Transform

(NORMHIST.XFM)

‘** Transform to Generate Normalized Histogram **

‘ This transform normalizes a bar chart to unit
‘ area. Box locations are shifted since bars are
‘ drawn about their center points

‘ Place your sample data in x_col or change the
‘ column number to suit your data. Results are
‘ placed in columns res through res+1.

x_col=1          ‘ sample data column
res=2           ‘first results column

‘Set histogram box width and upper limit
limit=5.5         ‘upper limit of last box
delta=0.5         ‘histogram box width

x=col(x_col)

‘**** CALCULATE AND NORMALIZE HISTOGRAM DATA ****

r=data(delta,limit,delta) ‘histogram boxes
h=histogram(x,r)     ‘create histogram
h1=h[data(1,size(h)-1)]  ‘remove last box

Normalized Histogram of Exponential Random Numbers
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‘shift bar center locations
x1=r-delta/2       ‘histogram x values

‘normalize histogram
y1=h1/(total(h1)*delta)  ‘histogram Y values

‘* PLACE NORMALIZED HISTOGRAM DATA IN WORKSHEET *

col(res)=x1
col(res+1)=y1

Shading Beneath Line Plot Curves 0

These are a pair of transforms that use two different methods to draw colors or 
hatches below a curve.

SHADE_1.XFM  uses bar chart fills or colors to fill the area below a curve. This 
method must be used if you want to fill with a color; however, you can only shade to 
an axis, and you can only use the default Windows fill patterns.

SHADE_2.XFM  uses line plots to fill below curves. This transform can also be used 
to draw fill lines between two curves.

Shading Below a
Curve with Color

To use this transform to create a shade under a curve, you can either use the provided 
sample data and graph or begin a new notebook, enter your own data, and create 
your own graph using the data.

1. To use the provided sample data and graph, open the Shade 1 worksheet and 
graph by double-clicking the graph page icon in the Shade 1 section of the 
Transform Examples notebook. The worksheet appears with data in columns 1 
and 2. The graph page appears with a line graph plotting column 1 against col-
umn 2.

2. To use your own data, enter the XY data for your curve in columns 1 and 2, 
respectively. If your data has been placed in other columns, you can specify these 
columns after you open the SHADE_1.XFM  transform file. Enter data into an 
existing or a new worksheet.

3. Create a line graph with two curves using your own data by creating a Line Plot 
with a Simple Straight Line curve plotting the column 1 data against the column 
2 data.

4. Press F10 to open the User-Defined Transform dialog, then open the 
SHADE_1.XFM transform file. The Shade 1 transform appears in the edit win-
dow. If necessary, change the source column numbers x_data and y_data to the 
correct column numbers.

5. Select Execute. The data for the bar chart is placed in columns 3 and 4, or what-
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ever columns were specified.

6. If you opened the sample Shade 1 graph, view the graph page. The graph auto-
matically appears plotting the curve of the original data and the data represent-
ing the shade under the curve.

7. If you created your own graph (see step 3) and you want to use SigmaPlot to 
plot the shade under the curve, add the shade under the curve by creating a Sim-
ple Vertical Bar Chart that plots columns 3 and 4, setting the bar width to max-
imum and the bar fill to either no pattern and the same color fill and edge as the 
line, or with a default Windows hatch pattern and fill and edge colors of none.

For more information on creating graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

Shade Beneath Curve
Transform

(SHADE_1.XFM)

‘   ****** Shading to an Axis ******
‘This transform uses vertical bars to create a 
‘fill between a curve and an axis. The x data 
‘MUST be sorted in increasing or decreasing order.

‘Apply this transform to your x,y data column pair.

‘    ************ Input ************
x_data = col(1) ‘column for x data
y_data = col(2) ‘column for y data
density = 200

Shading Below a Curve
with Color
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‘ The density determines how many bars are used 
‘to create the fill under the curve. The larger 
‘the density, the more bars are used, and the 
‘longer the graph takes to draw or print. For 
‘relatively "flat" curves, try using a smaller 
‘value for the density (like about 150). For 
‘sharply peaked curves, it may be necessary to 
‘increase the value of the density (to about 350).

‘     ********** Output **********
x_result = 3  ‘ column for x patterned bar fill
y_result = 4  ‘ column for y patterned bar fill

‘    ************ Program ************
dmax = max(x_data)
dmin = min(x_data)
dx = (dmax-dmin)/density
x = data(dmin,dmax,dx)
y = interpolate(x_data,y_data,x)
col(x_result) = x
col(y_result) = y 

Shading
Between Curves

To use this transform to create a shade pattern between two curves, you can either use 
the provided sample data and graph, or begin a new notebook, enter your own data, 
and create your own graph using the data.

1. To use the provided sample data and graph, open the Shade 2 worksheet and 
graph by double-clicking the graph page icon in the Shade 2 section of the 
Transform Examples notebook. The worksheet appears with data in columns 1 
through 4. The graph page appears with a line and scatter graph with two curves 
plotting column 1 against column 2 and column 3 against column 4.

2. To use your own data, enter the XY data for the first curve in columns one and 
two, and the XY data for the second curve in columns three and four, respec-
tively. The X data for both curves must be in strictly increasing order. If your 
data has been placed in other columns, you can specify these columns after you 
open the SHADE_2.XFM  transform file. You can enter data into an existing or 
a new worksheet.

3. To use your own data to create a graph, make a Line Plot with Multiple Straight 
Lines plotting the column 1 data against column 2 data for the first curve, and 
column 3 data against column 4 data as the second curve.

4. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the SHADE_2.XFM transform in the XFMS directory. If neces-
sary, change the source column numbers to the correct column numbers.
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5. Set the fill density to use. For a solid color between the curves, use a large den-
sity, about 500. For a nicely spaced vertical fill, try a density
of 50.

6. Select Execute. The data for the shade lines is placed in columns 5 and 6, or 
whatever columns were selected.

7. If you opened the Shade 2 graph, view the graph page. The graph automatically 
appears with the new plot filling the space between the curves in the original 
plot

8. If you created your own graph (see step 3) and you want to use SigmaPlot to 
plot the shade between the curves, add a new Line and Scatter Plot with Multi-
ple Straight Lines to the graph using columns 5 and 6 for the X and Y data, and 
if necessary, turn symbols off. The new plot appears as shade between the curves 
of the original plot.

For more information on creating graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

Shade Between
Curves Transform
(SHADE_2.XFM)

‘   ****** Shading Between Curves ******
‘This transform fills the area between two x-y 
‘line curves with vertical lines. The x data 
‘for both curves MUST be in strictly increasing 
‘order. 
‘Create a new line and scatter plot, select 
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‘'result_x' and 'result_y' columns for the x 
‘and y axes.; Turn symbols off in the Symbols panel of 
‘the Plot tab in the Graph Properties dialog.
‘For a solid color between the curves, use a 
‘large density, about 500. For a nicely spaced 
‘vertical fill, try a density of 50.

‘    ************ Input ************

cx1=1     ‘column for first curve x data
cy1=2     ‘column for first curve y data
cx2=3     ‘column for second curve x data
cy2=4     ‘column for second curve y data
density = 50  ‘line density of fill

‘   *********** RESULTS ************

result_x = 5  ‘column for x fill results
result_y = 6  ‘column for y fill results

‘   *********** Program ************
X1 = col(cx1)  ‘x data for first curve
Y1 = col(cy1)  ‘y data for first curve
X2 = col(cx2)  ‘x data for second curve
Y2 = col(cy2)  ‘y data for second curve
x1_min = min(X1)
x2_min = min(X2)
x1_max = max(X1)
x2_max = max(X2)

‘Take the largest x_min and the smallest x_max
x_min = if(x1_min < x2_min,x2_min,x1_min)
x_max = if(x1_max > x2_max,x2_max,x1_max)

dx = abs(x_max - x_min)/density
x = data(x_min,x_max,dx)
y1 = interpolate(X1,Y1,x)
y2 = interpolate(X2,Y2,x)

a = interpolate(x,x,x)   

for i = 1 to size(a) do
cell(result_x,3*i-2) =a[i]
cell(result_x,3*i-1) =a[i]
cell(result_x,3*i) = 0/0
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cell(result_y,3*i-2) = y1[i]
cell(result_y,3*i-1) = y2[i]
cell(result_y,3*i) = 0/0
end for 

Smooth Color Transition Transform 0

This transform example creates a smooth color transition corresponding to the 
changes across a range of values. The transform places color cells in a worksheet 
column that change from a specified start color to a specified end color, each color 
cell incrementing an equivalent shade for each data value in the range. This 
transform example shows how the color transform can be set to display a �cool� 
(blue) color that corresponds to small residuals, and a �hot� (red) color that 
corresponds to large residuals resulting from a nonlinear regression. Since residuals 
vary positively and negatively about zero, the absolute values for the residuals are 
used in the transform. 

Σ It is unnecessary to sort the data before executing the smooth color transition 
transform.  

To calculate and graph the smooth color transition of a set of data, you can either use 
the provided sample data and graph, or begin a new notebook, enter your own data, 
and create your own graph using the data.

1. To use the sample worksheet and graph, open the Smooth Color Transition 
worksheet and graph by double-clicking the graph page icon in the Smooth 
Color Transition section of the Transform Examples notebook. Data appears in 
columns 1 and 2 of the worksheet, and a scatter graph appears on the graph 
page.

2. To use your own data, place your data in columns 1 and 2. For the residuals 
example, column 2 is the absolute value of the residuals in column 1. To obtain 
absolute values of your data, use the abs transform function. For example, to 
obtain the absolute values of the data set in column 1, type the following trans-
form in the User-Defined Transform dialog:

col(2)=abs(col(1))

If your data is in a different column, specify the new column after you open the 
RGBCOLOR.XFM transform file.

3. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the RGBCOLOR.XFM transform file in the XFMS directory. 
The Smooth Color Transition transform appears in the edit window.

4. Select Execute. The results are placed starting one column over from the original 
data, or in the column you specified in the transform.
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5. If you opened the sample Smooth Color Transition graph, view the graph page. 
A Scatter Plot appears plotting column 2 as a Simple Scatter plot style using Sin-
gle Y data format. The symbol colors are obtained by specifying column 3 in the 
Symbols, Fill Color drop-down list in the Plots panel of the Graph Properties 
dialog. The Smooth Color Transition transform applies gradually changing col-
ors to each of the data points. The smaller residual values are colored blue, 
which gradually changes to red for the larger residuals.  

6. To create your own graph using SigmaPlot, make a Scatter Plot graph with a 
Scatter Plot with Simple Scatter style. Plot the data as Single Y data format. Use 
the color cells produced by the transform by selecting the corresponding work-
sheet column from the Symbol Fill Color drop-down list. 

For more information on how to create graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

Smooth Color
Transition Transform

(RGBCOLOR.XFM)

‘ Smooth Color Shade Transition from a Data Column
‘   This transform creates a column of colors which 
‘   change smoothly from a user defined initial
‘   intensity to a final intensity as the data
‘   changes from its minimum value to its maximum
‘   value. 
‘ Input
ci = 2     ‘ data input column
co = 3     ‘ color output column
sr =0      ‘ initial red intensity
sg = 50     ‘ initial green intensity
sb = 255    ‘ initial blue intensity

Figure 6�18
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fr = 255    ‘ final red intensity
fg = 50     ‘ final green intensity
fb = 0     ‘ final blue intensity

‘ Program
d = max(col(ci))-min(col(ci))
range = if( d=0, 1, d)
t = (col(ci) - min(col(ci)))/range
r = (fr-sr)*t+sr
g = (fg-sg)*t+sg
b = (fb-sb)*t+sb

‘ Output
col(co) = rgbcolor(r,g,b) ‘ place colors into worksheet

Survival (Kaplan-Meier) Curves with Censored Data 0

This transform creates Kaplan-Meier survival curves with or without censored data. 
The survival curve may be graphed alone or with the data. 

To use the transform, you can either use the provided sample data and graph or begin 
a new notebook, enter your own data, and create your own graph using the data.

1. To use the sample worksheet and graph, double-click the graph page icon in the 
Survival section of the Transforms Examples notebook. The Survival worksheet 
appears with data in columns 1 and 2. The graph page appears with an empty 
graph. If you open the sample worksheet and graph, skip to step 7.

2. To use your own data, enter survival times in column 1 of the worksheet. Ties 
(identical survival times) are allowed. You can enter data into an existing or a 
new worksheet.

3. Enter the censoring identifier in column 2. This identifier should be 1 if the cor-
responding data point in column 1 is a true response, and 0 if the data is cen-
sored.

4. If desired, save the unsorted data by copying the data to two other columns.

5. Select columns 1 and 2, then choose the Transforms menu Sort Selection com-
mand. Specify the key column in the Sort Selection dialog as column 1, and the 
sort order option as Ascending.

6. Check for any ties between true response and censored data. If any exist, make 
sure that within the tied data, the censored data follows the true response data.

7. From the worksheet, press F10 to open the User-Defined Transform dialog, then 
click the Open button, and open the SURVIVAL.XFM transform in the XFMS 
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directory. 

8. Select Execute to run the file. The sorted time, cumulative survival probability, 
and the standard error are placed in columns res, res+1, and res+2, respectively. 
For graphical purposes a zero, one, and zero have been placed in the first rows of 
the sorted time, cumulative survival curve probability and standard error col-
umns.

9. If you opened the sample Survival graph, view the page. The Simple Horizontal 
Step Plot graphs the survival curve data from columns res as the X data versus 
column res+1 as the Y data and a Scatter Plot graphs the data from the same col-
umns. The first data point of the Scatter Plot at (0,1) is not displayed by select-
ing rows 2 to end in the Portions of Columns Plotted area of the Data section in 
the Plots tab of the Graph Properties dialog. As shown in Figure 6�19, a tied 
censored data point has been incorrectly placed; it should follow uncensored 
data. 

10. To graph a survival curve using SigmaPlot, create a Line graph with a Simple 
Horizontal Step Plot graphing column res as the X data versus column res+1 as 
the Y data. If desired, create an additional Scatter plot, superimposing the sur-
vival data using the same columns for X data and Y data. To turn off the symbol 
drawn at x = 0 and y = 1, select Plot 2 and set Only rows = 2 to end by 1 in the 
Plots tab and Data sections of the Graph Properties dialog.

For more information on creating graphs, see the SigmaPlot User�s Manual. 

Figure 6�19
The Survival Graph Survival Curve Example with Censored Data
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Survival Transform
(SURVIVAL.XFM)

'*Kaplan-Meier Survival Curves with Censored Data*

' This transform calculates cumulative survival
' probabilities and their standard errors   
' Enter survival times in column sur_col and a
' censor index in column cen_col (0=censored,
' 1=not), or change the column numbers to suit
' your data. Results are placed in columns res
' and res+1.
' Procedure:
' 1) sort by increasing survival time
' 2) place censored data last if ties
' 3) run this transform
' 4) plot survival data as columns 3 vs 4, as
'   a stepped line shape with symbols
sur_col=1
cen_col=2
res=3
sur=col(sur_col)  'survival data
cen=col(cen_col)  'censored data
'********* CALCULATE CUMULATIVE SURVIVAL *********
mv=0/0       'missing value
i=data(1,size(sur)) 'integers
N=size(sur)     'number of cases
n=N+1
pi=(N-i+1-cen)/(N-i+1)
cs=10^(sum(log(pi)))  'cumulative survival
'Calculate standard error of survival
se=cs*sqrt(sum(cen/((N-i)*(N-i+1))))
'********** PLACE RESULTS IN WORKSHEET **********
col(res)={0,sur}
col(res+1)={1,cs}  'cumulative survival probability
col(res+2)={0,se}  'standard error of survival

User-Defined Axis Scale 0

The USERAXIS.XFM transform is a specific example how to transform data to fit 
the user-defined axis scale.

This transform:

➤ transforms the data using the new axis scale

➤ creates Y interval data for the new scale
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To use this transform to graph data along a  Y axis, you can either 
use the provided sample data and graph, or begin a new notebook, enter your own 
data, and create your own graph using the data.

1. To use the sample worksheet and graph, double-click the graph page icon in the 
User Defined Axis Scale section of the Transforms Examples notebook. The 
User Defined Axis Scale worksheet appears with data in columns 1 through 3. 
The graph page appears with an empty graph with gridlines.

2. To use your own data, place your original X data in column 1, Y data in column 
2, and the Y axis tick interval values in column 3. If your data has been placed in 
other columns, you can specify these columns after you open the USER-
AXIS.XFM file.

3. Press F10 to open the User-Defined Transform dialog, then open the USER-
AXIS.XFM transform. If necessary, change the y_col, tick_col, and res variables 
to the correct column numbers.

4. Select Execute. The results are placed in columns 4 and 5, or the columns speci-
fied by the res variable.

5. If you opened the User Defined Axis Scale graph, view the page. The graph is 
already set up to plot the data and grid lines.

6. To plot the transformed Y data using SigmaPlot, plot column 1 as the X values 
versus column 4 as the Y values. 

To plot the Y axis tick marks, open the Ticks panel under the Axes tab of the 
Graph Properties dialog. Select Column 5 from the Major Tick Intervals drop-
down list. 

To draw the tick labels, use the Y tick interval data as the tick label source by 
selecting Column 3 from the Tick Label Type drop-down list in the Tick Labels 
panel under the Axes tab of the Graph Properties dialog.  

For more information on creating graphs and modifying tick marks and tick 
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labels, see the SigmaPlot User�s Manual.  

User-Defined Axis
Scale Transform

(USERAXIS.XFM)

‘** Transform for the User Defined Y Axis Scale **
‘************* f(y)=log(log(100/y)) **************

‘ This transform is an example of how to transform
‘ your data to fit a custom axis scale, and to
‘ compute the grid line intervals for that scale

‘ Place your y data in y_col and the y tick mark
‘ locations in tick_col or change the column
‘ number to suit your data. Results are placed
‘ beginning in column res

y_col=2
tick_col=3
res=4

y_data=col(y_col) ‘Original y data

‘*********** FUNCTION FOR Y AXIS SCALE ***********

f(y)=log(log(100/y))   ‘Transform for axis scale

Figure 6�20
User-Defined Axis
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‘*********** COMPUTE Y TICK INTERVAL DATA ************

y1=f(col(tick_col))      ‘y tick intervals

‘*** PLACE Y DATA AND Y AXIS GRID IN WORKSHEET ***

col(res)=f(y_data)     ‘transformed y data
col(res+1)=y1        ‘y values for y grid

Vector Plot 0

The VECTOR.XFM transform creates a field of vectors (lines with arrow heads) 
from data which specifies the X and Y position, length, and angle of each vector. The 
data is entered into four columns. Executing the transform produces six columns of 
three XY pairs, which describe the arrow body and the upper and lower components 
of the arrow head.

Other settings are:

➤ the length of the arrow head

➤ the angle in degrees between the arrow head and the arrow body

➤ the length of the vector (if you want to specify it as a constant)

To generate a vector plot, you can either use the provided sample data and graph or 
begin a new notebook, enter your own data, and create your own graph using the 
data.

1. To use the sample worksheet and graph, double-click the graph page icon in the 
Vector section of the Transform Examples notebook. The Vector worksheet 
appears with data in columns 1 through 4. The graph page appears with an 
empty graph.

2. To use your own data, enter the vector information into the worksheet. Data 
must be entered in four column format, with the XY position of the vector start-
ing in the first column, the length of the vectors (which correspond to the axis 
units), and the angle of the vector, in degrees. The default starting column for 
this block is column one.

3. Press F10 to open the User-Defined Transforms dialog, then click the Open but-
ton to open the VECTOR.XFM file in the XFMS directory.

4. If necessary, change the starting worksheet column for your vector data block xc.

5. If desired, change the default arrowhead length L (in axis units) and the Angle 
used by the arrowhead lines. This is the angle between the main line and each 
arrowhead line.

6. If you want to use vectors of constant length, set the l value to the desired 
length, then uncomment the remaining two lines under the Constant Vector 
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Length heading.

7. Make sure that Radians are selected as the Trigonometric Units (they should be 
by default.

8. Select Execute to run the transform. The transform produces six columns of 
three XY pairs, which describe the arrow body and the upper and lower compo-
nents of the arrow head.

9. If you opened the Vector graph, view the page. The Line Plot with Multiple 
Straight Line appears plotting columns 5 through 10 as XY pairs.

10. To plot the vector data using SigmaPlot, create a Line Plot with Multiple 
Straight Line graph that plots columns 5 through 10 as three vector XY column 
pairs. 

For more information on creating graphs in SigmaPlot, see the SigmaPlot User�s 
Manual.

Vector Transform
(VECTOR.XFM)

'  ******** VECTOR PLOT TRANSFORM ********
' Given a field of vector x,y positions, angles
' and lengths (in four columns), this transform 
' will generate six columns of data that can be 
' plotted to display the original data as vectors 
' with arrow heads.

Figure 6�21
The Vector Graph
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' The input data is located in columns xc to xc+3 
' with x,y in columns xc and xc+1, vector angles 
' in column xc+2 and vector lengths in column xc+3. 
' The results are placed in columns xc+4 to xc+9
' To generate the vector plot, make a Line Plot
' with Multiple Straight Lines using XYpairs of 
' these columns: xc+4 vs xc+5, xc+6 vs xc+7, 
' xc+8 vs xc+9. 
' This transform may be used in conjunction with the 
' MESH.XFM transform which generates x,y pairs and 
' corresponding z values.
pi= 3.14159265359
'     ************ Input ************
xc=1         ' column for start of data block
L =.1         ' length of arrow head
Angle = pi/6    ' angle of arrow head (radians).
' ********** Constant Vector Length **********
' To specify a constant vector length uncomment the 
' two lines below and specify the vector length.
l=.5  ' length of vector (used only for constant
    ' length vectors). Uncomment the two
    ' statements below to use this value to specify 
    ' vectors with constant length l. 
    ' This will overwrite any data in column xc+3.
'nm=size(col(xc))
'col(xc+3)=data(l,l,nm)
'   ************ Results ************
' Column numbers for the vector output. These 
' two columns will contain the data that displays 
' the body of each vector.
body_x = xc+4
body_y = xc+5
' Columns containing the coordinates of the 
' "left-hand" branch of the arrow head.
left_branch_x = xc+6
left_branch_y = xc+7
' Columns containing the coordinates of the 
' "right-hand" branch of the arrow head.
right_branch_x = xc+8
right_branch_y = xc+9
'   ************ Program ************
x=col(xc)          'x positions of the vector field
y=col(xc+1)        'y positions of the vector field
theta=col(xc+2)     'angles of the vectors
m=abs(col(xc+3))   'lengths of the vectors
start_x=x-(m/2)*cos(theta)
start_y=y-(m/2)*sin(theta)
end_x=x+(m/2)*cos(theta)
end_y=y+(m/2)*sin(theta)
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' Calculate the coordinates of the bodies of 
' the vectors.
sx = data(1,size(end_x)*3)
col(body_x) = if(mod(sx,3)=1,start_x[int(sx/3)+1],
      if(mod(sx,3)=2,end_x[int(sx/3)+1],0/0))
col(body_y) = if(mod(sx,3)=1,start_y[int(sx/3)+1],
      if(mod(sx,3)=2,end_y[int(sx/3)+1],0/0))
' Calculate the coordinates of the arrow heads for
' the vectors.
vec_col_size = size(col(body_x))
 for i = 1 to vec_col_size step 3 do
 temp = if(cell(body_x,i)=cell(body_x,i+1),pi/2,
  arctan((cell(body_y,i+1) - cell(body_y,i))/
   (cell(body_x,i+1)-cell(body_x,i))))
 Theta = if(cell(body_y,i)-cell(body_y,i+1)<0,
 if(cell(body_x,i) <= cell(body_x,i+1),temp,
if(cell(body_x,i) > cell(body_x,i+1),pi+temp,0/0)),
if(cell(body_x,i) < cell(body_x,i+1),temp,
if(cell(body_x,i) >= cell(body_x,i+1),pi+temp,0/0)))
cell(left_branch_x,i) = cell(body_x,i+1)
cell(left_branch_x,i+1) = L * cos(pi + Theta 
 - Angle) + cell(body_x,i+1)
cell(left_branch_x,i+2) = 0/0
cell(left_branch_y,i) = cell(body_y,i+1)
cell(left_branch_y,i+1) = L * sin(pi + Theta
 - Angle) + cell(body_y,i+1)
cell(left_branch_y,i+2) = 0/0
cell(right_branch_x,i) = cell(body_x,i+1)
cell(right_branch_x,i+1) = L * cos(pi + Theta 
 + Angle) + cell(body_x,i+1)
cell(right_branch_x,i+2) = 0/0
cell(right_branch_y,i) = cell(body_y,i+1)
cell(right_branch_y,i+1) = L * sin(pi + Theta 
 + Angle) + cell(body_y,i+1)
cell(right_branch_y,i+2) = 0/0
end for

Z Plane Design Curves 0

The ZPLANE.XFM transform is a specific example of the use of transforms to 
generate data for a unit circle and curves of constant damping ratio and natural 
frequency. 

The root locus technique analyzes performance of a digital controller in the z plane 
using the unit circle as the stability boundary and the curves of constant damping 
ratio and frequency for a second order system to evaluate controller performance. 
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Root locus data is loaded from an external source and plotted in Cartesian 
coordinates along with the design curves in order to determine performance. 

Refer to Digital Control of Dynamic Systems , Gene. F. Franklin and J. David Powell, 
Addison-Wesley, pp. 32 and 104 for the equations and graph. 

To calculate the data for the design curves, you can either use the provided sample 
data and graph, or begin a new notebook, enter your own data, and create your own 
graph using the data.

1. To use the sample worksheet and graph, double-click the graph page icon in the 
Z Plane section of the Transform Examples notebook. The Z Plane worksheet 
appears with data in columns 1 through 10. The Z Plane graph page appears 
with the design curve data plotted over some sample root locus data. This plot 
uses columns 1 and 2 as the first curve and columns 3 and 4 as the second curve.

2. To use your own data, place your root locus, zero, and pole data in columns 1 
through 10. If your locus data has been placed in other columns, you can change 
the location of the results columns after you open the ZPLANE.XFM file.

3. To plot the design curves of your data, create a Line Plot with Multiple Spline 
Curves, then plot column 1 as the X data against column 2 as the Y data for the 
first curve and column 3 as the X data against column 4 as the Y data as the sec-
ond curve.

4. Press F10 to open the User-Defined Transform dialog, then click the Open but-
ton, and open the ZPLANE.XFM transform in the XFMS directory. 
If necessary, change the res variable to the correct column number.

5. Select Execute. The results are placed in columns 11 through 20, or the columns 
specified by the res variable.

6. If you opened the Z Plane graph, view the page. The circle, frequency trajectory, 
and damping trajectory data is automatically plotted with the design data.

7. To plot the circle data using SigmaPlot, create Multiple Line Plots with Simple 
Spline Curves. For the first plot use column 11 as the X values versus column 12 
as the Y values. To plot the frequency trajectory data (zeta) plot column 13 ver-
sus column 14 and column 15 versus column 16 as the XY pairs. To plot the 
damping trajectory data (omega) plot column 17 versus column 18 and column 
19 versus column 20 as the XY pairs. 
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For more information on creating graphs in SigmaPlot, see the SigmaPlot User�s 
Manual. 

Z Plane Transform
(ZPLANE.XFM)

‘****** Transform for Z Plane Design Curves ******
‘ This transform generates the data for a unit
‘ circle and curves of constant damping ratio and
‘ natural frequency
‘ See Digital Control of Dynamic Systems,
‘ G.F. Franklin, J.D. Powell, pp. 32, 104.
‘ Root locus, zero, and pole data is loaded from an
‘ external source
res=11
‘********* CALCULATE DATA FOR UNIT CIRCLE ********
pi=3.1415926
n=50
theta=data(0,2*pi*(1+1/n),pi/n)
circ_x=cos(theta)      ‘circle x coordinates
circ_y=sin(theta)      ‘circle y coordinates
‘**** CALCULATE CONSTANT DAMPING TRAJECTORIES ****t
th=data(0,pi*(1+1/n),pi/n)
‘Data for zeta 1:
z1=.3               ‘zeta 1 constant
r1=exp(-th*z1/(sqrt(1-z1^2)))
z1_x={r1*cos(th),"--",r1*cos(th)} ‘zeta 1 x coord
z1_y={r1*sin(th),"--",-r1*sin(th)} ‘zeta 1 y coord
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‘Data for zeta 2:
z2=.7               ‘zeta 2 constant
r2=exp(-th*z2/(sqrt(1-z2^2)))
z2_x={r2*cos(th),"--",r2*cos(th)} ‘zeta 2 x coord
z2_y={r2*sin(th),"--",-r2*sin(th)} ‘zeta 2 y coord
‘*** CALCULATE CONSTANT FREQUENCY TRAJECTORIES ***
‘Data for omega 1:
wnT1=0.1*pi           ‘omega 1 constant
z={data(0,.99,.05),.9999}
th1=wnT1*sqrt(1-z^2)
r3=exp(-th1*z/(sqrt(1-z^2)))
w1_x={r3*cos(th1),"--",r3*cos(th1)}   ‘omega 1 x
w1_y={r3*sin(th1),"--",-r3*sin(th1)}  ‘omega 1 y
‘Data for omega 2:
wnT2=.5*pi           ‘omega 1 constant
th2=wnT2*sqrt(1-z^2)
r4=exp(-th2*z/(sqrt(1-z^2)))
w2_x={r4*cos(th2),"--",r4*cos(th2)}   ‘omega 2 x
w2_y={r4*sin(th2),"--",-r4*sin(th2)}  ‘omega 2 y
‘* PLACE CIRCLE AND TRAJECTORY DATA IN WORKSHEET *
col(res)=circ_x     ‘circle x coordinates
col(res+1)=circ_y    ‘circle y coordinates
col(res+2)=z1_x     ‘zeta 1 x coordinates
col(res+3)=z1_y     ‘zeta 1 y coordinates
col(res+4)=z2_x     ‘zeta 2 x coordinates
col(res+5)=z2_y     ‘zeta 2 y coordinates
col(res+6)=w1_x     ‘omega 1 x coordinates
col(res+7)=w1_y     ‘omega 1 y coordinates
col(res+8)=w2_x     ‘omega 2 x coordinates
col(res+9)=w2_y     ‘omega 2 y coordinates 
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Introduction To The Regression 
Wizard

This chapter describes:

➤ an overview of regression

➤ the Regression Wizard (see page 144)

➤ opening .FIT files (see page 145)

➤ the Marquardt-Levenberg curve fitting algorithm (see page 147)

Regression Overview 0

What is Regression? Regression is most often used by scientists and engineers to visualize and plot the 
curve that best describes the shape and behavior of their data. 

Regression procedures find an association between independent and dependent 
variables that, when graphed on a Cartesian coordinate system, produces a straight 
line, plane or curve. This is also commonly known as curve fitting.

The independent variables are the known, or predictor, variables. These are most 
often your X axis values. When the independent variables are varied, they result in 
corresponding values for the dependent, or response, variables, most often assigned to 
the Y axis.

Regression finds the equation that most closely describes, or fits, the actual data, 
using the values of one or more independent variables to predict the value of a 
dependent variable. The resulting equation can then be plotted over the original data 
to produce a curve that fits the data.

7
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The Regression Wizard 0

SigmaPlot uses the Regression Wizard to perform regression and curve fitting. The 
Regression Wizard provides a step-by step guide through the procedures that let you 
fit the curve of a known function to your data, and then automatically plot the curve 
and produce statistical results. 

The Regression Wizard greatly simplifies curve fitting. There is no need to be 
familiar with programming or higher mathematics. The large library of built-in 
equations are graphically presented and organized by different categories, making 
selection of your models very straight-forward. Built-in shortcuts let you bypass all 
but the simplest procedures; fitting a curve to your data can be as simple as picking 
the equation to use, then clicking a button.

The Regression Wizard can be used to

➤ Select the function describing the shape of your data. SigmaPlot provides over 
100 built-in equations. You can also create your own custom regression 
equations.

➤ Select the variables to fit to the function. You can select your variables from 
either a graph or a worksheet.

➤ Evaluate and save your results. Resulting curves can be plotted automatically on 
a graph, and statistical results saved to the worksheet and text reports. 

These procedures are described in further detail in the next chapter.

Feature Highlights The Regression Wizard offers notable improvements over the previous SigmaPlot 
curve fitters. These include

➤ a built-in Equation Library that can be extended limitlessly with your own user-
defined functions and libraries

Figure 7�1
Selecting an Equation from

the Regression Wizard
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➤ graphical display of built-in equations

➤ graphical selection of variables from worksheets or graphs

➤ automatic parameter estimation for widely varied datasets

➤ automatic plotting of results

➤ automatic generation of textual reports

➤ inclusion of fit equations into notebooks

The Regression Wizard is also one-hundred percent compatible with older .FIT files, 
as described below.

Opening .FIT Files 0

Use the File menu Open command to open old curve fit (.FIT) files, selecting 
SigmaPlot Curve Fit as the file type. .FIT files are opened as a single equation in a 
notebook.

.FIT files can also be opened from the library panel of the Regression Wizard.

Adding .FIT Files to a
Library or Notebook

You can add these equations to other notebooks by copying and pasting. To add 
them to your regression library, open the library notebook (STANDARD.JFL for 
SigmaPlot�s built-in library), then copy the equation and paste it into the desired 
section of the library notebook. 

You can also create your own library by simply combining all your old .FIT files into 
a single notebook, then setting this notebook to be your default equation library (see 
�Using a Different Library for the Regression Wizard � on page 178).
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Remember, sections appear as categories in the library, so create a new section to 
create a new equation category.

.FIT files as well as new equations do not have graphic previews of the equation.

About the Curve Fitter 0

The curve fitter works by varying the parameters (coefficients) of an equation, and 
finds the parameters which cause the equation to most closely fit your data. Both the 
equation and initial parameter values must be provided. All built-in equations have 
the curve equation and initial parameters predefined.

The curve fitter accepts up to 25 equation parameters and ten independent equation 
variables. You can also specify up to 25 parameter constraints, which limit the search 
area of the curve fitter when checking for parameter values.

The regression curve fitter can also use weighted least squares for greater accuracy.

Curve-fitting
Algorithm

The SigmaPlot curve fitter uses the Marquardt-Levenberg algorithm to find the 
coefficients (parameters) of the independent variable(s) that give the �best fit� 
between the equation and the data. 

This algorithm seeks the values of the parameters that minimize the sum of the 
squared differences between the values of the observed and predicted values of the 
dependent variable where  is the observed and  is the predicted value of the 
dependent variable.

Figure 7�2
Opening a .FIT file as a
notebook using the File

menu Open... command
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This process is iterative�the curve fitter begins with a �guess� at the parameters, 
checks to see how well the equation fits, then continues to make better guesses until 
the differences between the residual sum of squares no longer decreases significantly. 
This condition is known as convergence.

For informative references about curve-fitting algorithms, see below.

References for the Marquardt-Levenberg
Algorithm 0

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1986). 
Numerical Recipes. Cambridge: Cambridge University Press.

Marquardt, D.W. (1963). An Algorithm for Least Squares Estimation of Parameters. 
Journal of the Society of Industrial and Applied Mathematics , 11, 431-441.

Nash, J.C. (1979). Compact Numerical Methods for Computers: Linear Algebra and 
Function Minimization . New York: John Wiley & Sons, Inc.

Shrager, R.I. (1970). Regression with Linear Constraints: An Extension of the 
Magnified Diagonal Method. Journal of the Association for Computing Machinery , 17, 
446-452.

Shrager, R.I. (1972). Quadratic Programming for N. Communications of the ACM , 
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Regression Wizard

The Regression Wizard is designed to help you select an equation and other 
components necessary to run a regression on your data. The Regression Wizard 
guides you through.

➤ Selecting your equation, variables, and other options

➤ Saving the results and generating a report

➤ Plotting the predicted variables

Using the Regression Wizard 0

To run the Regression Wizard

Selecting the
Data Source

1. Open or view the page or worksheet with the data you want to fit. 

If you select a graph, right-click the curve you want fitted, and choose Fit Curve.

If you are using a worksheet, highlight the variables you want to fit, then press 
F5 or choose the Statistics menu Regression Wizard... command. The Regres-
sion Wizard opens.

Selecting the
Equation to Use

2. Select an equation using the Equation Category and Equation Name drop-down 
lists. You can view different equations by selecting different categories and 
names. The equation�s mathematical expression and shape appear to the left.

8
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For a complete list of the built-in equations, see � Regression Equation Library� 
on page 259.

If the equation you want to use isn�t on this list, you can create a new equation. 
See �Editing Code� on page 185 for more information. You can also browse 
other notebooks and regression equation libraries for other equations; see 
�Regression Equation Libraries and Notebooks � on page 177 for more informa-
tion on using equation libraries.

Σ Note that the equation you select is remembered the next time you open the 
wizard.

If the Finish button is available, you can click it to complete your regression. If it 
is not available, or if you want to further specify your results, click Next.

Selecting the
Variables to Fit

3. Clicking Next opens the variables panel. You can select or reselect your variables 
from this panel. To select a variable, click a curve on a graph, or click a column 
in a worksheet. The equation picture to the left prompts you for which variable 
to select.

You can also modify other equation settings and options from this panel using 
the Options button. These options include changing initial parameter estimates, 
parameter constraints, weighting, and other related settings.

For more information on setting options, see � Equation Options� on page 157.

Figure 8�1
Selecting an Equation

Category and
Equation Name
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If you pick variables from a worksheet column, you can also set the data format. 
See �Variable Options� below for descriptions of the different data formats. 

Viewing Initial
Results

4. When you have selected your variables, you can either click Finish, or click Next 
to continue.

Clicking Next executes the regression equation and displays the initial results. 
These results are also displayed if you receive a warning or error message about 
your fit.

For interpretation of these results, see � Interpreting Initial Results � on page 164.

Setting Results
Options

5. If you wish to modify the remainder of the results that are automatically saved, 
click Next. Otherwise, click Finish.

Figure 8�2
Selecting a Plot as the

Data Source for the
Regression Wizard

Figure 8�3
The Initial Results for

a Regression
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The first results panel lists 

➤ which results are saved to the worksheet 

➤ whether or not a text report of the regression is to be generated

➤  whether or not a copy of the regression equation is saved to the section that 
contains the data that was fitted

6. Select which results you want to keep. These settings are remembered between 
regression sessions. 

7. Click Finish or click Next to select the graphed results. 

Setting Graph
Options

8. If you selected your variables from a graph, you can add your equation curve to 
that graph automatically. You can also plot the equation on any other graph on 
that page.

You also always have the option of creating a new graph of the original data and 
fitted curve.

After selecting the graphed results you want, click Finish. Click Next only if you 
want to select the specific columns used to contain the data for the equation.

Figure 8�4
Selecting the

Results to Save

These settings are retained
between sessions.

Figure 8�5
Selecting the

Results to Graph

These settings are retained
between sessions.
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9. To select the columns to use for the plotted results, click the columns in the 
worksheet where you want the results to always appear. Remember, these set-
tings are re-used each time you perform a regression.

Finishing the
Regression

When you click Finish, all your results are displayed in the worksheet, report, and 
graph. The initial defaults are to save parameter and computed dependent variable 
values to the worksheet, to create a statistical report, and to graph the results.

To change the results that are saved, use the Next button to go through the entire 
wizard, changing your settings as desired.

Running a Regression From a Notebook 0

Because regression equations can be treated like any other notebook item, you can 
select and open regression equations directly from a notebook. This is particularly 
convenient if you have created or stored equations along with the rest of your graphs 
and data.

1. View the notebook with the equation you want to use, and double-click the 
equation. You can also click the equation, then click the Open button. The 
Regression Wizard opens with the equation selected.

2. Select the variables as prompted by clicking a curve or worksheet columns. Note 
that at this point you can open and view any notebook, worksheet or page you 
would like, and pick your variables from that source.

Figure 8�6
Selecting the Graph

Results Columns

These settings are retained
between sessions.
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3. Click Finish to complete the regression, or click Next if you want to view initial 
results or change your results options.

Creating New Regression Equations 0

You can create new regression equations two different ways: by using the New button 
in the Regression Wizard, or by creating a new item for anotebook.

When you create a new equation, the Regression editing dialog appears with blank 
headings. For information on how to fill in these headings, see � Editing Code� on 
page 185.

Viewing and Editing Code 0

Viewing Code To view the code for the current equation document, click the Edit Code button. For 
more information, see �Editing Code� on page 185.

Figure 8�7
Selecting a Regression

Equation from a Notebook
to Start the Regression

Wizard
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You can click the Edit Code button from the equation or variables panels. The Edit 
Code button opens the Regression dialog. All settings for the equation are displayed.

Σ Note that the Equations, Parameters, and Variables are non-editable for built-in 
SigmaPlot equations. However, you can edit and save our built-in equations as new 
equations. Simply click Add As, add the equation to the desired section, and then edit 
the Equations, Variables and Parameters as desired.

You can also copy and paste equations from notebook to notebook like any other 
notebook item. Pasted built-in equations also become completely editable.

Entering the code for new equations is described in detail in � Editing Code� on page 
185.

Figure 8�8
Viewing the code for a
built-in equation in the

Regression dialog.
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Variable Options 0

Data Format Options If you use data columns from the worksheet, you can specify the data format to use 
in the variables panel. By default, the data format when assigning columns from the 
worksheet is XY Pair. 

The data format options are

➤ XY pair: Select an x and a y variable

➤ Y only: Select only a y variable column

➤ XY column means: pick one x column, then multiple y columns; the y columns 
will be graphed as means.

➤ Y column means only: pick multiple y columns; the columns will be graphed as 
means.

➤ From Code: uses the current settings as shown when editing code

When you use an existing graph as your data source, the Regression Wizard displays 
a format reflecting the data format of the graph. You cannot change this format 
unless you switch to using the worksheet as your data source, or run the regression 
directly from editing the code.

Multiple Independent
Variables

Although the standard regression library only supports up to two independent 
variables, the curve fitter can accept up to ten. To use models that have more than 
two independent variables, simply create or open a model with the desired equation 
and variables. The Regression Wizard will prompt you to select columns for each 
defined variable.

Figure 8�9
Variable Data

Format Options
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Equation Options 0

If the curve fitter fails to find a good fit for the curve, you can try changing the 
regression options to see if you can improve the fit. To set options for a regression, 
click the Options button in the Variables panel of the Regression Wizard. The 
Regression Options dialog of the Regression Wizard appears.

Σ If you want to edit the settings in the equation document manually, click the Edit 
Code button. For more information on editing equation documents manually, see 
�Editing Code� on page 185.

Use the Regression Options dialog to 

➤ change initial parameter values

➤ add or change constraints

➤ change constant values

➤ use weighted fitting, if it is available

➤ change convergence options 

Figure 8�10
Variable Data Format

Options for a 3D Function

Figure 8�11
Regression Option Dialog
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Parameters The default setting for the equation is shown. The Automatic setting available with 
the built-in SigmaPlot equations uses algorithms that analyze your data to predict 
initial parameter estimates. These do not work in all cases, so you may need to enter 
a different value. Just click the parameter you want to change, and make the change 
in the edit box. 

The values that appear in the Initial Parameters drop-down list were previously 
entered as parameter values. Any parameter values you enter will also be retained 
between sessions. 

Parameters can be either a numeric value or a function. The value of the parameter 
should approximate the final result, in order to help the curve fitter reach a valid 
result, but this depends on the complexity and number of parameters of the 
equation. Often an initial parameter nowhere near the final result will still work. 
However, a good initial estimate helps guarantee better and faster results.

For more information on how parameters work, see � Initial Parameters� on page 
198. For an example on the effect of different initial parameter values, see ' Curve 
Fitting Pitfalls' on page 219. For more information on the use of automatic 
parameter estimation, see 'Automatic Determination of Initial Parameters ' on 
page 202.

Constraints Constraints are used to set limits and conditions for parameter values, restricting the 
regression search range and improving curve fitter speed and accuracy. Constraints 
are often unnecessary, but should always be used whenever appropriate for your 
model.

Figure 8�12
Setting Initial

Parameter Options
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Constraints are also useful to prevent the curve fitter from testing unrealistic 
parameter values. For example, if you know that a parameter should always be 
negative, you can enter a constraint defining the parameter to be always less than 0.

You can also use constraints if the regression produces parameter values that you 
know are inaccurate. Simply click Back from the initial results panel, click the 
Options button, and enter constraint(s) that prevent the wrong parameter results. 

Note that if the curve fitter encounters constraints while iterating, you can view these 
constraints from the initial results panel using the Constraints button. For more 
information, see �Checking Use of Constraints � on page 166.

Entering Parameter
Constraints

To enter constraints, click the Constraints edit box, and type the desired 
constraint(s), using the transform language operators.

A constraint must be a linear equation of the equation parameters, using an equal ( =) 
or inequality (< or >) sign. For example, you could enter the following constraints 
for the parameters a, b, c, d, and e:

a<1
10∗b+c/20>2
d−e=15
a>b+c+d+e

However, the constraint

a∗x<1

is illegal, since x is a variable, not a parameter, and the constraints

b+c^2>4
d∗e=1

Figure 8�13
Setting Initial

Parameter Options
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are illegal because they are nonlinear. Inconsistent and conflicting constraints are 
automatically rejected by the curve fitter.  

Defining Constants Constants that appear in the Constants edit window have been previously defined as 
a constant, rather than a parameter to be determined by the regression. To edit a 
constant value, or define new constant values, use the Edit Code... option of the 
Wizard dialog. For more information on editing and defining new constant values, 
see �Defining Constants� on page 190. 

Constants are defined when an equation is created. Currently, you can only define 
new constants by editing the regression equation code.

However, you can redefine any existing constants. Change only the value of the 
constant. Do not add new constant values; constant variables must exist in the 
equation and not be defined already under variables or parameters, so they can only 
be defined within the code of an equation.

Fit with Weight You can select from any of the weights listed. Some built-in equations have some 
predefined values, although most do not. If no weighting options are available for 
your equation, only the None option will be available.

Figure 8�14
Entering Parameter

Constraints
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Weighting options appear in the Fit with Weight drop-down list. By default, the 
weighting applied to the fit is None. To apply a different weighting setting, select a 
weighting option from the drop-down list. 

Weight variables must be defined by editing the regression code. For information on 
how to define your own weighting options, see � Weight Variables� on page 197.

For a demonstration of weighting variable use, see � Example 2: Weighted 
Regression� on page 224. 

Iterations The Iterations option sets the maximum number of repeated fit attempts before 
failure. Each iteration of the curve fitter is an attempt to find the parameters that best 
fit the model. With each iteration, the curve fitter varies the parameter values 
incrementally, and tests the fit of that model to your data. When the improvement in 
the fit from one iteration to the next is smaller than the setting determined by the 
Tolerance option, the curve fitter stops and displays the results.

Changing the number of iterations can be used to speed up or improve the regression 
process, especially if more than the default of 100 iterations are required for a 
complex fit. You can also reduce the number of iterations if you want to end a fit to 
check on its interim progress before it takes too many iterations.

Figure 8�15
Selecting a Predefined

Weight Variable

Figure 8�16
Changing Iterations
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To change the maximum number of iterations, enter the number of iterations to use, 
or select a previously used number of iterations from the drop down list.

When the maximum number of iterations is reached, the regression stops and the 
current results are displayed in the initial parameters panel. If you want to continue 
with more iterations, you can click the Iterations button. For more information on 
using the Iterations button, see � More Iterations� on page 166.

For more information on the use of iterations, see � Iterations� on page 200. 

Step Size Step size, or the limit of the initial change in parameter values used by the curve fitter 
as it tries, or iterates, different parameter values, is a setting that can be changed to 
speed up or improve the regression process. 

A large step size can cause the curve fitter to wander too far away from the best 
parameter values, whereas a step size that is too small may never allow the curve fitter 
to reach the value of the best parameters.

The default step size value is 100. To change the Step Size value, type the desired step 
size in the Step Size edit box, or select a previously defined value from the drop-down 
list. 

For more information on use of the Step Size option, see � Step Size� on page 201.

For an example of the possible effects of different step sizes, see ' Curve Fitting 
Pitfalls' on page 219.

Tolerance The Tolerance option controls the condition that must be met in order to end the 
regression process. When the absolute value of the difference between the norm of the 
residuals (square root of the sum of squares of the residuals), from one iteration to the 
next, is less than the tolerance value, the iteration stops. The norm for each iteration 

Figure 8�17
Changing Step Size
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is displayed in the progress dialog, and the final norm is displayed in the initial results 
panel.

When the tolerance condition has been met, a minimum of the sum of squares has 
usually been found, which indicates a correct solution. However, local minimums in 
the sum of squares can also cause the curve fitter to find an incorrect solution. For an 
example of the possible effects of different tolerance values, see ' Curve Fitting Pitfalls ' 
on page 219.

Decreasing the value of the tolerance makes the requirement for finding an 
acceptable solution more strict; increasing the tolerance relaxes this requirement.

The default tolerance setting is 0.0001. To change the tolerance value, type the 
desired value in the Tolerance edit box, or select a previously defined value from the 
drop-down list. For more details on the use of changing tolerance, see � Tolerance� on 
page 201. 

Saving Regression Equation Changes 0

When an equation is edited using the Options or Regression dialogs, or when you 
add an equation, all changes are updated to the equation in the library or notebook. 
However, just like other notebook items, these changes are not saved to the file until 
the notebook is saved. Changes made to regression libraries are automatically saved 
when the Regression Wizard is closed.

You can also save changes to regression libraries using the Save or Save As buttons in 
the Regression Wizard. This saves the current regression library notebook to disk. 
Save As allows you to save the regression library to a new file.

If you have a regression library open as a notebook, you can also save changes by 
saving the notebook using the File menu Save or Save As... command. 

Figure 8�18
Changing Tolerance
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Watching The Fit Progress 0

During the regression process, the Regression fit progress dialog displays the number 
of iterations completed, the norm value for each iteration, and a progress bar 
indicating the percent complete of the maximum iterations.

Cancelling a
Regression

To stop a regression while it is running, click the Cancel button. The initial results 
appear, displaying the most recent parameter values, and the norm value. You can 
continue the regression process by clicking the More Iterations button.

Interpreting Initial Results 0

When you click Next from the variables panel, the regression process completes by 
either converging, reaching the maximum number of iterations, or encountering an 
error. When any of these conditions are met, or whenever there is an error or 
warning, the initial results panel is displayed.  

Figure 8�19
The Regression Fit

Progress Dialog

Figure 8�20
Initial Regression Results
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Completion
Status Messages

A message displaying the condition under which the regression completed is 
displayed in the upper left corner of the Regression Wizard. If the regression 
completed with convergence, the message:

Converged, tolerance satisfied
is displayed. Otherwise, another status or error message is displayed. For a 
description of these messages, see � Regression Results Messages � on page 182.

Rsqr R2 is the coefficient of determination, the most common measure of how well a 
regression model describes the data. The closer R2 is to one, the better the 
independent variables predict the dependent variable. 

R2 equals 0 when the values of the independent variable does not allow any 
prediction of the dependent variables, and equals 1 when you can perfectly predict 
the dependent variables from the independent variables. 

Initial Results The initial results are displayed in the results window, in five columns.

Parameter  The parameter names are shown in the first column. These parameters 
are derived from the original equation.

Value  The calculated parameter values are shown in the second column.

StdErr  The asymptotic standard errors of the parameters are displayed in column 
three. The standard errors and coefficients of variation (see next) can be used as a 
gauge of the fitted curve's accuracy. 

CV(%)  The parameter coefficients of variation, expressed as a percentage, are 
displayed in column four. This is the normalized version of the standard errors:

The coefficient of variation values and standard errors (see above) can be used as a 
gauge of the accuracy of the fitted curve. 

Dependency  The last column shows the parameter dependencies. The dependence 
of a parameter is defined to be

Parameters with dependencies near 1 are strongly dependent on one another. This 
may indicate that the equation(s) used are too complicated and �over-
parameterized��too many parameters are being used, and using a model with fewer 
parameters may be better.

CV% standard error 100 parameter value§×=

dependence 1
variance of the parameter, other parameters constant( )
variance of the parameter, other parameters changing( )

---------------------------------------------------------------------------------------------------------------------------------------–=
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Changing the
Regression Equation

or Variables

To go back to any of the previous panels, just click Back. This is especially useful if 
you need to change the model (equation) used, or if you need to modify any of the 
equation options and try the curve fit again.

More Iterations If the maximum number of iterations was reached before convergence, or if you 
canceled the regression, the More Iterations button is available. Click More Iterations 
to continue for as many iterations as specified by the Iterations equation option, or 
until completion of the regression.

Checking Use of
Constraints

If you used parameter constraints, you can determine if the regression results 
involved any constraints by clicking the View Constraints button. This button is 
dimmed if no constraints were entered.

The Constraints dialog displays all constraints, and flags the ones encountered with 
the word �(active)�. A constraint is flagged as active when the parameter values lie on 
the constraint boundary. For example, the constraint:

a+b<1 

is active when the parameters satisfy the condition a +b=1, but if a+b<1, the 
constraint is inactive.

Note that an equality constraint is always active (unless there are constraint 
inconsistencies). 

Quitting the
Regression

If the regression results are unsatisfactory, you can click Back and change the 
equation or other options, or you can select Cancel to close the wizard. 

If you want to keep your results, click Finish. You can also click Next to specify 
which results you want to keep.

Saving Regression Results 0

Regression reports and other data results are saved using the Regression Wizard 
results options panel, which appears after the initial results panel. Settings made here 
are retained from session to session. 

Figure 8�21
The Constraints Dialog
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The type of data results that can be saved to the current notebook for each regression 
procedure are

➤ the function results, saved to the worksheet

➤ a statistical report

➤ a copy of the regression equation

Saving the Results
using Default

Settings

To save the regression results using the default save setting, click Finish at any point 
the Finish button is active. If you want to see or modify the results that are produced, 
you can use the Next button to advance to the results options panel.

Saving Results to the
Worksheet

Function results can be saved to the current worksheet. These are

➤ equation parameter values

➤ predicted values of the dependent variable for each independent variable value

➤ residuals, or the difference between the predicted and observed dependent 
variable values

To place any of these values in a column in the worksheet, simply check the results 
you want to keep. If you want to set a specific column in which to always place these 
values, you can click a column on a worksheet for each result.     

Saving a Report Regression reports are saved to the current section by checking the Report option.  
For more information about interpreting reports, see � Interpreting Regression 
Reports� on page 169. 

Adding the Equation
to the Notebook

To add the current regression equation to the current notebook, check the Add 
Equation to Notebook checkbox. 

If this option is selected, a copy of the equation is added to the current section of 
your notebook.

Figure 8�22
Generating and Saving

a Report from the
Regression Wizard
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Graphing Regression Equations 0

SigmaPlot can graph the results of a regression as a fitted curve. A curve or graph is 
created by default. If you want to disable graphed results, you can change the options 
in the Regression Wizard graph panel. Note that these settings are retained from 
session to session.

From the graph panel, you can choose to plot the results either by

➤ adding a plot to an existing graph. This option is only available if the fitted 
variables were assigned by selecting them from a graph.

➤ creating a new graph of the original data and fitted curve

To add a plot to an existing graph, click the Add Curve to checkbox option, then 
select the graph to which you want to add a plot from the drop-down list. The drop-
down list includes all the graphs on the current page. If there is no existing graph, 
this option is dimmed.

If you want to specify the columns used to plot the fitted curve, click Next. 
Otherwise, the data is placed in the first available columns.

To create a new graph, click the Create New Graph checkbox option. Click Finish to 
create a new notebook section containing a worksheet of the plotted data and graph 
page. 

Figure 8�23
A Fitted Curve

Added to a Graph
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Data Plotted for
Regression Curves

You can specify the worksheet columns used to add a fitted curve to an existing 
graph, or to create a new graph, by clicking Next from the graph panel.

From this panel you can select worksheet columns for X, Y, (and Z data for 3D 
graphs) by clicking worksheet columns. The default of First Empty places the results 
in the first available column after the last filled cell.

Interpreting Regression Reports 0

Reports can be automatically generated by the Regression Wizard for each curve 
fitting session. The statistical results are displayed to four decimal places of precision 
by default.

Reports are displayed using the SigmaPlot report editor. For information on 
modifying reports, see �Using the Report Editor� on page 319 in the User�s Manual.

Equation Code This is a printout of the code used to generate the regression results.

Figure 8�24
The Regression Wizard

Pick Output Dialog
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See �Editing Code� on page 185, for more information on how to read the code for a 
regression equation.

R and R Squared The multiple correlation coefficient, and R2, the coefficient of determination , are 
both measures of how well the regression model describes the data. R values near 1 
indicate that the equation is a good description of the relation between the 
independent and dependent variables. 

R equals 0 when the values of the independent variable does not allow any prediction 
of the dependent variables, and equals 1 when you can perfectly predict the 
dependent variables from the independent variables. 

Adjusted R Squared The adjusted R2, R2
adj, is also a measure of how well the regression model describes 

the data, but takes into account the number of independent variables, which reflects 
the degrees of freedom. Larger R2

adj  values (nearer to 1) indicate that the equation is 
a good description of the relation between the independent and dependent variables. 

 Standard Error of
the Estimate ( )

The standard error of the estimate  is a measure of the actual variability about the 
regression plane of the underlying population. The underlying population generally 
falls within about two standard errors of the observed sample. 

 Statistical
Summary Table

The standard error, t and P values are approximations based on the final iteration of 
the regression.

Estimate  The value for the constant and coefficients of the independent variables for 
the regression model are listed.

Figure 8�25
Regression Report
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Standard Error  The standard errors are estimates of the uncertainties in the 
estimates of the regression coefficients (analogous to the standard error of the mean). 
The true regression coefficients of the underlying population are generally within 
about two standard errors of the observed sample coefficients. Large standard errors 
may indicate multicollinearity.

t statistic  The t statistic tests the null hypothesis that the coefficient of the 
independent variable is zero, that is, the independent variable does not contribute to 
predicting the dependent variable. t is the ratio of the regression coefficient to its 
standard error, or

You can conclude from �large� t values that the independent variable can be used to 
predict the dependent variable (i.e., that the coefficient is not zero). 

P value  P is the P value calculated for t. The P value is the probability of being 
wrong in concluding that the coefficient is not zero (i.e., the probability of falsely 
rejecting the null hypothesis, or committing a Type I error, based on t). The smaller 
the P value, the greater the probability that the coefficient is not zero. 

Traditionally, you can conclude that the independent variable can be used to predict 
the dependent variable when P < 0.05.

Analysis of Variance
(ANOVA) Table

The ANOVA (analysis of variance) table lists the ANOVA statistics for the regression 
and the corresponding F value for each step.

SS (Sum of Squares)   The sum of squares are measures of variability of the 
dependent variable. 

➤ The sum of squares due to regression measures the difference of the regression 
plane from the mean of the dependent variable

➤ The residual sum of squares is a measure of the size of the residuals, which are 
the differences between the observed values of the dependent variable and the 
values predicted by the regression model

DF (Degrees of Freedom)   Degrees of freedom represent the number of observations 
and variables in the regression equation. 

➤ The regression degrees of freedom is a measure of the number of independent 
variables

➤ The residual degrees of freedom is a measure of the number of observations less 
the number of parameters in the equation

MS (Mean Square)   The mean square provides two estimates of the population 
variances. Comparing these variance estimates is the basis of analysis of variance.

t
regression coefficient

standard error of regression coefficient
-----------------------------------------------------------------------------------------------=
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The mean square regression is a measure of the variation of the regression from the 
mean of the dependent variable, or

The residual mean square is a measure of the variation of the residuals about the 
regression plane, or

The residual mean square is also equal to .

F statistic  The F test statistic gauges the contribution of the independent variables 
in predicting the dependent variable. It is the ratio

If F is a large number, you can conclude that the independent variables contribute to 
the prediction of the dependent variable (i.e., at least one of the coefficients is 
different from zero, and the �unexplained variability� is smaller than what is expected 
from random sampling variability of the dependent variable about its mean). If the F 
ratio is around 1, you can conclude that there is no association between the variables 
(i.e., the data is consistent with the null hypothesis that all the samples are just 
randomly distributed). 

P value  The P value is the probability of being wrong in concluding that there is an 
association between the dependent and independent variables (i.e., the probability of 
falsely rejecting the null hypothesis, or committing a Type I error, based on F). The 
smaller the P value, the greater the probability that there is an association. 

Traditionally, you can conclude that the independent variable can be used to predict 
the dependent variable when P < 0.05.

PRESS Statistic PRESS, the Predicted Residual Error Sum of Squares , is a gauge of how well a 
regression model predicts new data. The smaller the PRESS statistic, the better the 
predictive ability of the model.

sum of squares due to regression
regression degrees of freedom

-------------------------------------------------------------------------------
SSreg

DFreg

------------ MSreg= =

residual sum of squares
residual degrees of freedom
-------------------------------------------------------------------

SSres

DFres

------------ MSres= =

Sy x
2

regression variation from the dependent variable mean
residual variation about the regression

------------------------------------------------------------------------------------------------------------------------------------
MSreg

MSres

------------- F= =
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The PRESS statistic is computed by summing the squares of the prediction errors 
(the differences between predicted and observed values) for each observation, with 
that point deleted from the computation of the regression equation. 

Durbin-Watson
Statistic

The Durbin-Watson statistic is a measure of correlation between the residuals. If the 
residuals are not correlated, the Durbin-Watson statistic will be 2; the more this value 
differs from 2, the greater the likelihood that the residuals are correlated. 

Regression assumes that the residuals are independent of each other; the Durbin-
Watson test is used to check this assumption. If the Durbin-Watson value deviates 
from 2 by more than 0.50, a warning appears in the report, i.e., if the Durbin-
Watson statistic is below 1.50 or above 2.50.

Normality Test The normality test results display whether the data passed or failed the test of the 
assumption that the source population is normally distributed around the regression, 
and the P value calculated by the test. All regressions assume a source population to 
be normally distributed about the regression line. If the normality test fails, a 
warning appears in the report.

Failure of the normality test can indicate the presence of outlying influential points 
or an incorrect regression model.

Constant
Variance Test

The constant variance test results displays whether or not the data passed or failed the 
test of the assumption that the variance of the dependent variable in the source 
population is constant regardless of the value of the independent variable, and the P 
value calculated by the test. When the constant variance test fails, a warning appears 
in the report.

Figure 8�26
Regression Report
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If the constant variance test fails , you should consider trying a different model (i.e., 
one that more closely follows the pattern of the data) using a weighted regression, or 
transforming the independent variable to stabilize the variance and obtain more 
accurate estimates of the parameters in the regression equation.

If you perform a weighted regression, the normality and equal variance tests use the 
weighted residuals  instead of the raw residuals .

Power The power, or sensitivity, of a regression is the probability that the model correctly 
describes the relationship of the variables, if there is a relationship. 

Regression power is affected by the number of observations, the chance of 
erroneously reporting a difference α (alpha), and the slope of the regression. 

Alpha (a)  Alpha (α) is the acceptable probability of incorrectly concluding that the 
model is correct. An α error is also called a Type I error (a Type I error is when you 
reject the hypothesis of no association when this hypothesis is true). 

Smaller values of α result in stricter requirements before concluding the model is 
correct, but a greater possibility of concluding the model is incorrect when it is really 
correct (a Type II error). Larger values of α make it easier to conclude that the model 
is correct, but also increase the risk of accepting an incorrect model (a Type I error).

Regression
Diagnostics

The regression diagnostic results display the values for the predicted values, residuals, 
and other diagnostic results. 

Row  This is the row number of the observation.

Predicted Values  This is the value for the dependent variable predicted by the 
regression model for each observation. 

Residuals  These are the unweighted raw residuals, the difference between the 
predicted and observed values for the dependent variables.

Standardized Residuals   The standardized residual is the raw residual divided by the 
standard error of the estimate . 

If the residuals are normally distributed about the regression, about 66% of the 
standardized residuals have values between −1 and +1, and about 95% of the 
standardized residuals have values between −2 and +2. A larger standardized residual 
indicates that the point is far from the regression. Values less than -2.5 or larger than 
2.5 may indicate outlying cases. 

Studentized Residuals   The Studentized residual is a standardized residual that also 
takes into account the greater confidence of the predicted values of the dependent 
variable in the �middle� of the data set. By weighting the values of the residuals of the 
extreme data points (those with the lowest and highest independent variable values), 
the Studentized residual is more sensitive than the standardized residual in detecting 
outliers.

wi yi ŷi–( ) yi ŷi–
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This residual is also known as the internally Studentized residual, because the 
standard error of the estimate is computed using all data.

Studentized Deleted Residuals   The Studentized deleted residual, or externally 
Studentized residual, is a Studentized residual which uses the standard error of the 
estimate , computed after deleting the data point associated with the 
residual. This reflects the greater effect of outlying points by deleting the data point 
from the variance computation. 

The Studentized deleted residual is more sensitive than the Studentized residual in 
detecting outliers, since the Studentized deleted residual results in much larger values 
for outliers than the Studentized residual.

Influence Diagnostics Row  This is the row number of the observation.

Cook's Distance  Cook's distance is a measure of how great an effect each point has 
on the estimates of the parameters in the regression equation. It is a measure of how 
much the values of the regression coefficients would change if that point is deleted 
from the analysis. 

Values above 1 indicate that a point is possibly influential. Cook's distances 
exceeding 4 indicate that the point has a major effect on the values of the parameter 
estimates. 

Leverage  Leverage values identify potentially influential points. Observations with 
leverages a two times greater than the expected leverages are potentially influential 
points. 

The expected leverage of a data point is , where there are p parameters and n data 
points.

Because leverage is calculated using only the dependent variable, high leverage points 
tend to be at the extremes of the independent variables (large and small values), 

Sy x i–( )

Figure 8�27
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where small changes in the independent variables can have large effects on the 
predicted values of the dependent variable. 

DFFITS  The DFFITSi statistic is a measure of the influence of a data point on 
regression prediction. It is the number of estimated standard errors the predicted 
value for a data point changes when the observed value is removed from the data set 
before computing the regression coefficients. 

Predicted values that change by more than 2.0 standard errors when the data point is 
removed are potentially influential. 

95% Confidence
Intervals

If the confidence interval does not include zero, you can conclude that the coefficient 
is not zero with the level of confidence specified. This can also be described as P < α 
(alpha), where α is the acceptable probability of incorrectly concluding that the 
coefficient is different than zero, and the confidence interval is 100(1 − α). 

The confidence level for both intervals is fixed at 95% ( α=0.05).

Row  This is the row number of the observation.

Predicted Values  This is the value for the dependent variable predicted by the 
regression model for each observation. 

Regression  The confidence interval for the regression gives the range of variable 
values computed for the region containing the true relationship between the 
dependent and independent variables, for the specified level of confidence. The 5% 
values are lower limits and the 95% values are the upper limits. 

Population  The confidence interval for the population gives the range of variable 
values computed for the region containing the population from which the 
observations were drawn, for the specified level of confidence. The 5% values are 
lower limits and the 95% values are the upper limits.   

Figure 8�28
Regression Report
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Regression Equation Libraries and Notebooks 0

Regression equations are stored in notebook files just as other SigmaPlot documents. 
Notebooks that are used to organize and contain only regression equations are 
referred to as libraries, and distinguished from ordinary notebooks with a file 
extension of .JFL. These library notebooks can be opened and modified like any 
other notebook file. You can also use ordinary SigmaPlot notebooks (.JNB) as 
equation libraries, as well as save any notebook as a .JFL file.

Regression equations within notebooks are indicated with a  icon that appears 
next to the equation name.

The equations that appear in the Regression Wizard are read from a default 
regression library. The way the equations are named and organized in the equations 
panel is by using the section name as the category name, and the entry name as the 
equation name.

For example, the STANDARD.JFL regression library supplied with SigmaPlot has 
twelve categories of built-in equations:

➤ Polynomial

➤ Peak

➤ Sigmoidal

➤ Exponential Decay

➤ Exponential Rise to Maximum

➤ Exponential Growth

➤ Hyperbola

Figure 8�29
The Standard Regression

Equation Library
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➤ Waveform

➤ Power

➤ Rational

➤ Logarithm

➤ 3D

These categories correspond to the section names within the STANDARD.JFL 
notebook. The equations for these different categories are listed in Appendix , 
�Regression Equation Library�.

To see the library currently in use, click the Back button from the Regression Wizard 
equation panel. Previously selected libraries and open notebooks can be selected from 
the Library Drop Down list.

Opening an
Equation Library

A regression equation library can be opened, viewed and modified as any ordinary 
notebook. To open a regression library

➤ click the Open toolbar button, select *.JFL as the file type from the File Type 
drop-down list, then select the library to open, or

➤ click the Open button in the Regression Wizard library panel to open the 
current library. The library panel can be reached by clicking Back from the 
Equations panel

You can copy, paste, rename and delete regression equations as any other notebook 
item. Opening a regression equation directly from a notebook automatically launches 
the Regression Wizard with the variables panel selected.

Using a Different
Library for the

Regression Wizard

You can also select another notebook or library as the source for the equations in the 
Regression Wizard. Selecting a different equation library changes the categories and 
equations listed Regression Wizard equations panel. 

To change the library:

1. Start the Regression Wizard by pressing F5 or choosing the Statistics menu 
Regression Wizard command.

Figure 8�30
Selecting the Regression

Equation Library
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2. Click Back to view the library panel. To change the library used, enter the new 
library path and name, or click Browse... 

3. The File Open dialog appears. Change the path and select the file to use as your 
regression library. When you start the Regression Wizard next, it will continue 
to use the equation library selected in the library panel. 

Σ Note that opening a regression equation directly from a notebook does not reset the 
equation library.

Curve Fitting Date And Time Data 0

You can run the Regression wizard on data plotted versus calendar times and dates. 
Dates within and near the twentieth century are stored internally as very large 
numbers. However, you can convert these dates to relatively small numbers by setting 
Day Zero to the first date of your date, then converting the date data to numbers. 
After curve fitting the data, you can switch the numbers back to dates.

Σ If you have entered clock times only, then you can directly curve fit those time 
without having to convert these to numbers. Time only entries assume the internal 
start date of 4713 B.C. (the start of the Julian calendar). However, if you have entered 
times using a more recent calendar date, you must convert these times to numbers as 
well.

Figure 8�31
You can curve fit

dates, but you
must convert the

dates to
numbers first.

Time only data
(as shown in

column 1) does
not require a
conversion.



Regression Wizard

180 Curve Fitting Date And Time Data

To convert your dates to numbers:

1. Choose the Tools menu Options command, then select Date and Time from the 
Show Settings For list.

2. Set Day Zero to be the first date of your data, or to begin very close to the start-
ing date of your data. You must include the year as well as month and day.

3. Click OK, then view the worksheet and select your data column. Choose the 
Format menu Cells command and choose Numeric. 

Your dates are converted to numbers.

Figure 8�32
Setting Day Zero

Figure 8�33
Converting Dates

to Numbers
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These numbers should be relatively small numbers. If the numbers are large, you 
did not select a Day Zero near your data starting date.

4. If the axis range of you graph is manual, convert it back to automatic. Select the 
axis, then open the Graph Properties dialog and change the range to Automatic.

5. Click you curve and run your regression. When you are finished, you must con-
vert the original and fitted curve x variable columns back to dates. 

6. Select each column, then choose the Format menu Cells command and choose 
Date and Time... , then click OK.

When the columns are converted back to dates, the graph should rescale and 
you have completed your date and time curve fit.

Figure 8�34
Selecting the Regression

Equation Library

Figure 8�35
The Data and Fitted Curve X
Variables Converted Back to

Dates and Graphed



Regression Wizard

182 Regression Results Messages

Regression Results Messages 0

When the initial results of a regression are displayed, a message about the completion 
status appears. Explanations of the different messages are found below.

Completion
Status Messages

Converged, tolerance satisfied . This message appears when the convergence 
criterion, which compares the relative change in the norm to the specified tolerance, 
is satisfied. Note that this result may still be false, caused by a local minimum in the 
sum of squares.

Converged, zero parameter changes . The changes in all parameters between the 
last two iterations are less than the computer's precision.

Did not converge, exceeded maximum number of iterations . More iterations were 
required to satisfy the convergence criteria. Select More Iterations to continue for the 
same number of iterations or increase the number of iterations specified in the 
Options dialog and rerun the regression.

Did not converge, inner loop failure . There are two nested iterative loops in the 
Marquardt algorithm. This diagnostic occurs after 50 sequential iterations in the 
inner loop. The use of constraints may cause this to happen due to a lack of 
convergence. In some cases, the parameter values obtained with constraints are still 
valid, in the sense that they result in good estimates of the regression parameters.

Terminated by user. You pressed Esc, or selected the Cancel button and terminated 
the regression process.

Function overflow using initial parameter values . The regression iteration process 
could not get started since the first function evaluation resulted in a math error. For 
example, if you used f = sqrt(−a*x), and the initial a value and all x values are 
positive, a math error occurs. Examine your equation, parameter values and 
independent variable values, and make the appropriate changes.

Parameters may not be valid. Array ill conditioned on final iteration . During the 
regression iteration process the inverse of an array (the product of the transpose of the 
Jacobian matrix with itself) is required. Sometimes this array is nearly singular (has a 
nearly zero determinant) for which very poor parameter estimates would be obtained.

SigmaPlot uses an estimate of the �condition� of the array (ill conditioned means 
nearly singular) to generate this message (see Dongarra, J.J., Bunch, J.R., Moler, 
C.B., and Stewart, G.W., Linpack User's Guide , SIAM, Philadelphia, 1979 for the 
computation of condition numbers).

Usually this message should be taken seriously, as something is usually very wrong. 
For example, if an exponential underflow has occurred for all x values, part of the 
equation is essentially eliminated. SigmaPlot still tries to estimate the parameters 
associated with this phantom part of the equation, which can result in invalid 
parameter estimates.
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A minority of the time the �correct,� though poorly conditioned, parameters are 
obtained. This situation may occur, for example, when fitting polynomial or other 
linear equations. 

Parameters may not be valid. Array numerically singular on final iteration . This is a 
variant of the above condition. Instead of using the condition number the inverted 
array is multiplied by the original array and the resulting array elements are tested 
(the off diagonal elements are compared to 0.0 and the diagonal elements compared 
to 1.0).

If the absolute value of any off diagonal element or difference of the diagonal element 
from 1.0 is greater than a specified tolerance, then the original array is considered to 
be singular.

Parameters may not be valid. Overflow in partial derivatives . The partial 
derivatives of the function to be fit, with respect to the parameters, are computed 
numerically using first order differences.

Math errors from various sources can cause errors in this computation. For example if 
your model contains exponentials and the parameters and independent variable 
values cause exponential underflows, then the numerical computation of the partial 
derivative will be independent of the parameter(s). SigmaPlot checks for this 
independence.

Check the parameter values in the results screen, the range of the independent 
variable(s) and your equation to determine the problem.

Error Status
Messages

Bad constraint . The regression cannot proceed because a constraint you defined 
either was not linear or contained syntax errors. 

Invalid or missing �fit to� statement . The regression lacks a fit to statement, or the fit 
to statement contains one or more syntax errors.

No observations to fit . The regression cannot proceed unless at least one x,y data 
pair (observation) is included. Check to be sure that the data columns referenced in 
the regression specifications contain data.

No parameters to fit . The regression specifications do not include any parameter 
definitions. To add parameter definitions, return to the Edit Regression dialog and 
type the parameter definitions, in the Parameters edit window. 

No weight statement . The regression specifications include a fit to statement with an 
unknown weight variable. Check the Variables edit window to see if a weight variable 
has been defined and that this corresponds to the variable in the regression statement.

Not enough or bad number of observations . In regression, the x and y data sets must 
be of the same size. The data sets (x and y columns) you specified contain unequal 
numbers of values.
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Problem loading the file [Filename]. File too long; truncated . The fit file you tried 
to load is too long. Regression files can be up to 50 characters wide and 80 lines long. 
Any additional characters or lines were truncated when the file was loaded into the 
Edit Window.

Section has already been submitted . This regression section has already been 
defined.

Symbol [Variable or Function] has not been defined . The fit to statement in the 
regression definition contains an observed variable which is undefined, or the fit to 
statement in the regression definition contains an undefined function. Examine the 
regression specifications you have defined and be sure that the dependent variable 
listed in the regression statement exists and corresponds to the variable defined in the 
Variables edit window and that the function listed in the regression statement exists 
and corresponds to the function you defined in the Equations edit window. 

Unreferenced variable . The regression specifications define a parameter that is not 
referenced in any other statements. Either delete the parameter definition, or 
reference it in another statement. 
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Editing Code

You can edit a regression equation by clicking the Edit Code button from the 
Regression Wizard. Regression equations can be selected from within the wizard, or 
opened from a notebook directly.

You can also create new regression equations. Creating a new equation requires entry 
of all the code necessary to perform a regression. This chapter covers:

➤ Selecting an equation for editing (see page 186)

➤ Entering equation code (see page 188)

➤ Defining constants (see page 190)

➤ Entering variables code (see page 194)

➤ Entering parameters code (see page 198)

➤ Entering code for parameter constraints and other options (see page 199)

About Regression Equations 0

Equations contain not only the regression model function, but other information 
needed by SigmaPlot to run a regression. All regression equations contain code 
defining the equations, parameter settings, variables, constraints, and other options 
used.

To edit the code for an equation, you need to either open and edit an existing 
equation, or create a new equation.

Protected Code for
Built-in Equations

All built-in equations provided in STANDARD.JFL have protected portions of code 
which can be viewed and copied but not edited. However, you may use Add As to 
create a duplicate entry that can be edited, and you can also copy a built-in equation 
from the library to another notebook or section and edit it.

Using .FIT Files For information on opening and editing SigmaPlot 3.0 and earlier .FIT files, see 
�Opening .FIT Files� on page 145.

9
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Opening an Existing
Equation

You can open an equation by:

➤ double-clicking an equation icon in a notebook window, or selecting the 
equation then clicking Open

➤ starting the Regression Wizard, then selecting the equation by category and 
name 

You can also double-click and equation in a notebook while the Regression Wizard is 
open to switch to that equation.

Once an equation is opened, you can edit it by clicking the Edit Code button.

Creating a New
Equation

If you require an equation that does not appear in the standard equation library, you 
can create a new equation.  

New equations can be created by:

➤ Clicking the New button in the Regression Wizard

➤ Choosing File menu New command, and selecting Regression Equation

➤ Right-clicking in the notebook window, and choosing New, Regression 
Equation from the shortcut menu

A new equation document has no default settings for the equations, parameters, 
variables, constraints, or other options. 

To create a new equation from within the Regression Wizard:

1. Open the Regression Wizard by pressing F5 or by choosing the Statistics menu 
Regression Wizard command. 

Figure 9�1
Opening an Equation

from a Notebook
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2. Click New to create a new equation document. The Regression dialog box 
appears. 

To use the File Menu New Command:

1. Select the notebook section where you want to add the equation. If you want the 
equation to be created in a new section, click the notebook icon.

2. Choose the File menu New command, and select Regression Equation from the 
New drop-down list. 

3. Click OK to create the new equation. The Regression dialog box opens.

To create an Equation from the Notebook View:

1. Right-click the section where you want the equation to go. If you want the equa-
tion to be created in a new section, right-click the notebook icon.

2. Choose New from the shortcut menu, and choose Regression Equation. The 
Regression dialog box opens.

Figure 9�2
Selecting Regression

Equation from
the New dialog box

Figure 9�3
Creating a New Equation

from the Notebook



Editing Code

188 Entering Regression Equation Settings

Copying Equations You can copy an existing equation from any notebook view to another, and modify it 
as desired. 

Adding Equations as
New Entries

Equations can also be edited from within the Regression Wizard, and added as new 
equations to the current library using the Add As button in the Regression dialog 
box.

Entering Regression Equation Settings 0

To enter the settings for new equations, click the desired edit window in the 
Regression dialog box and enter your settings.

This section covers the minimum steps required to enter the code for a regression 
equation. For more information on entering the code for each section, see:

➤ �Equations� on page 193

➤ �Variables� on page 194

➤ �Weight Variables� on page 197

➤ �Initial Parameters� on page 198

➤ �Constraints� on page 199

➤ �Other Options� on page 200

Adding
Comments

Comments are placed in the edit box by preceding them with an apostrophe 
(�), or a semicolon (;). You can also use apostrophes or semicolons to comment out 
equations instead of deleting them.

Figure 9�4
The Regression Dialog
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Entering Equations To enter the code for the Equation section:

1. Click in the Equation window and type the regression equation model, using 
the transform language operators and functions. 

The equation should contain all of the variables you plan to use as independent 
variables, as well as the name for the predicted dependent variable (which is not 
your y variable). You can use any valid variable name for your equation variables 
and parameters, but short, single letter names are recommended for the sake of 
simplicity.

Omit the observed dependent variable name from the regression model. The 
observed dependent variable (typically your y variable) is used in the fit state-
ment.

2. Press the Enter key when finished with the regression equation model, then type 
the fit statement. The simplest form of the fit statement is:

fit f to y

Where f is the predicted dependent variable from the regression model, and y is 
the variable that will be defined as the observed dependent variable (typically the 
variable plotted as y in the worksheet).

3. You can also define whether or not weighting is used. For more information on 
how to perform weighted regressions, see � Weight Variables� on page 197.

Figure 9�5
Entering the Regression

Equation
and the

Regression Statement
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Example  The code

f=m*x+b
fit f to y

can be used as the model for the function , and also defines y as the 
observed dependent variable. In this example, x is the independent variable, and m 
and b the equation parameters. 

Defining Constants Constants that appear in the equations can also be defined under the equations 
heading. If you decide that an equation parameter should be a constant rather than a 
parameter to be determined by the regression, define the value for that constant here, 
then make sure you don�t enter this value in the parameters section.     

Constants defined here appear under the Constants option in the Regression 
Options dialog box.

Entering Variables Independent, dependent, and weighting variables are defined in the Variables 
section. One of the variables defined must be the observed values of the dependent 
variable: that is, the �unknown� variable to be solved for. The rest are the 
independent variables (predictor, or known variables) and an optional weighting 
variable. 

To define your variables:

1. Click in the Variables section and type the character or string you used for the 
first variable in your regression equation. 

2. Type an equal sign (=), then enter a range for the variable. Ranges can be any 
transform language function that produces a range, but typically is simply a 
worksheet column. 

Note that the variable values used by the Regression Wizard depend entirely on 
what are selected from the graph or worksheet; the values entered here are only 
used if the From Code data format is selected, or if the regression is run directly 
from the Regression dialog box.

3. Repeat these steps for each variable in your equation. Up to ten independent 
variables can be defined, but you must define at least one variable for a regres-
sion equation to function. The curve fitter checks the variable definitions for 
errors and for consistency with the regression equation.

f x( ) mx b+=
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Example: To define x and y as the variables for the equation code

f=m*x+b
fit f to y

you could enter enter the code

x=col(1)
y=col(2)

which defines an x variable as column 1 and a y variable as column 2, using these 
columns whenever the regression is run directly from the code. 

Automatic Initial
Parameter Estimation

Functions

Any user-defined functions you plan on using to compute initial parameter estimates 
must be entered into the Variables section. For more information on how to code 
initial parameter estimate function, see �Automatic Determination of Initial 
Parameters� on page 202.

Entering Initial
Parameters

Parameters are the equation coefficients and offset constants that you are trying to 
estimate in your equation model. The definitions or functions entered into the 
Parameters sections determine which variables are used as parameters in your 
equation model, and also their initial values for the curve fitter. 

The curve fitter checks the parameter equations for errors and for consistency with 
the regression equations.

To enter initial parameter values:

1. Click in the Initial Parameters section and type the name of the first parameter 
as it appears in your equation model, followed by an equals (=) sign. 

2. Enter the initial parameter value used by the curve fitter. Ideally, this should be 
as close to the real value as possible. This value can be numeric, or a function 

Figure 9�6
Entering the Variable

Definitons
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that computes a �good guess� for the parameter. Using a function for the inital 
parameter value is called automatic parameter estimation. For more information 
on parameter estimation, see �Automatic Determination of Initial Parameters � 
on page 202.

Example  If your data for the equation code

f=m*x+b
fit f to y

appear to rise to the right and run through the origin, you could define your initial 
parameter as

m=0.5
b=0

These are good initial guesses, since the m coefficient is the slope and the b constant 
is the y-intercept of a straight line.

Constraints Parameter Constraints are completely optional, and should only be entered if you 
suspect they will improve the performance of the curve fitter. See � Constraints� on 
page 199 for when and how to enter constraints.

Options The Iterations, Step Size and Tolerance options sometimes can be used to improve or 
limit your curve fit. The default settings work for the large majority of cases, so you 
do not need to change these setting unless truly required. For conditions that may 
call for the use of these options, see � Curve Fitting Pitfalls� on page 219. For more 
information on the effect of these options, see � Other Options� on page 200.

Saving Equations 0

Once you are satisfied with the settings you have entered into the Regression dialog 
box, you can save the equation. Clicking OK automatically updates the equation 
entry in the current notebook or regression library. If you created a new equation, 
you are prompted to name it before it is added to your notebook.

If you are editing an existing equation, you can click Add As to add the code as a new 
equation to the current library or notebook.

In order to save your changes to disk, you must also save the notebook or library. 
Changes to your current regression library are automatically saved when you close the 
wizard. You can also save changes before you close the wizard by clicking the Save 
button. Click Save As to save the regression library to a new file. 

If your equation is part of a visible notebook, you can save changes by saving the 
notebook using the Save button or the File menu Save or Save As commands.
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Note that when an equation is edited using the Regression Options dialog box, all 
the changes are also automatically updated and saved. 

Saving Equation
Copies with Results

You can save equations along with the targeted page or worksheet while saving your 
regression results. Just check the Add Equation to Notebook option in the results 
panel, and a copy of the equation used is added to the same section as reports and 
other results.

Equations 0

The Equation section of the Regression dialog box defines the model used to perform 
the regression as well as the names of the variables and parameters used.

The regression equation code is defined using the transform language operators and 
functions. The equation must contain all of the variables you wish to use. These 
include all independent variables, the predicted dependent variable, and observed 
dependent variable. All parameters and constants used are also defined here.

The Equation code consists of two required components:

➤ The equation model describing the function(s) to be fit to the data

➤ The fit statement, which defines the predicted dependent variable and, 
optionally, the name of a weighting variable

The independent variable and parameters are defined within the equation function. 
Also, any constants that are used must also be defined under the Equations section.

Defining the Equation
Model

The equation model sets the predicted variable (called f in all built-in functions) to 
be a function of one or more independent variables (called x in the built-in two-
dimensional Cartesian functions) and various unknown coefficients, called 
parameters.

The model may be described by more than one function. For example, the following 
three equations define a dependent variable f, which is a constant for   and a 
straight line for .

f = if (x < 1, constant (x), line (x))
constant (x) = c
line (x) = a + b * x

Number of
Parameters

You can enter and define up to 25 parameters, but a large number of parameters will 
slow down the regression process. You can determine if you are using too many 
parameters by examining the parameter dependencies  of your regression results. 
Dependencies near 1.0 (0.999 for example) indicate that the equation is 
overparameterized, and that you can probably remove one or more dependent 

x 1<
x 1≥
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parameters. For more information on parameter dependencies, see � Interpreting 
Initial Results� on page 164. 

Defining the Fit
Statement

The most general form of the fit statement is:

fit f to y with weight w

f identifies the predicted dependent variable to be fit to the data in the set of 
equations, as defined by the model.

y is the observed dependent variable, later defined in the Variables section, whose 
value is generally determined from a worksheet column.

w is the optional weight variable, also defined in the Variables section. Any valid 
variable name can be used in place of f, y, and w. 

If the optional weighting variable is not used, the fit statement has the form:

fit f to y

Defining Constants Constants are simply defined by setting one of the parameters of the equation model 
to a value, using the form

constant=value

For example, one commonly used constant is pi, defined as

pi=3.14159265359

Defining Alternate Fit
Statements

You can create alternate fit statements that call different weight variables. These 
statements appear as fit statements preceeded by two single quotes ('', not a double 
quote).

For each weight variable you define, you can create a weighting option by adding 
commented fit statements to the equation window. 

For example, an Equation window that reads

f=a*exp(-b*x)+c*exp(-d*x)+g*exp(-h*x)
fit f to y
''fit f to y with weight Reciprocal

would display the option Reciprocal in the Regressions Options dialog box Fit With 
Weight list.

Variables 0

Independent, dependent, and weighting variables are defined in the Variables edit 
window. One of the variables defined must be the observed values of the dependent 
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variable: that is, the �unknown� variable to be solved for. The rest are the 
independent variables (predictor, or known variables) and any optional weighting 
variables. Up to ten independent variables can be defined. 

To define your variables, select the Variables edit window, then type the variable 
definitions. You generally need to define at least two variables�one for the 
dependent variable data, and at least one for the independent variable data.

Variable Definitions Variable definitions use the form:

variable = range

You can use any valid variable name, but short, single letter names are recommended 
for the sake of simplicity (for example, x and y). The range can either be the column 
number for the data associated with each variable, or a manually entered range.

Most typically, the range is data read from a worksheet. The curve fitter uses 
SigmaPlot�s transform language, so the notation for a column number is:

col(column,top,bottom)

The column argument determines the column number or title.  To use a column title 
for the column argument, enclose the column title in quotation marks. The top and 
bottom arguments specify the first and last row numbers and can be omitted. The 
default row numbers are 1 and the end of the column, respectively. If both are 
omitted, the entire column is used. For example, to define the variable x to be 
column 1, enter:

x = col(1)

Data may also be entered directly in the variables section. For example, you can 
define y and z variables by entering:

Figure 9�7
An Equations Window with

Alternate Fit Statements
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y = {1,2,4,8,16,32,64}
z = data(1,100)  

This method can have some advantages. For example, in the example above the data 
function was used to automatically generate Z values of 1 through 100, which is 
simpler than typing the numbers into the worksheet. 

Σ Note that the Regression Wizard generally ignores the default variable settings, 
although it requires valid variable definitions in order to evaluate an equation. 
Variables are redefined when the variables are selected from within the wizard. 
However, you can force the use of the hard-coded variable definitions, either by 
selecting From Code as the data source, or running the regression directly from the 
Regression dialog box.

Transform
Language Operations

You can use any transform language operator or function when defining a variable. 
For example:

x = 10^data(−2, log(10.8),0.5)
y = ((col(2)−col(2)*(.277*col(1))^0.8))*1.0e−12
z = 1/sqrt(abs(col(3)))

are all valid variable names.

User-Defined
Functions

Any user-defined functions that are used later in the regression code must be defined 
in the Variables section. 

Concatenating
Columns

Constructor notation can be used to concatenate data sets. For example, you may 
want to fit an equation simultaneously to multiple y columns paired with one x 
column. If the x data is in column 1 and the y data is in columns 2 through 6, you 
can enter the following variable statements

x = {col (1), col (1), col (1), col (1), col (1)}
y = {col (2), col (3), col (4), col (5), col (6)}

The variable x is then column 1 concatenated with itself four times, and variable y is 
the concatenation of columns 2 through 6.

If the function to be fit is f, then the fit statement

fit f to y

fits f to the dependent variable values in columns 2 through 6 for the independent 
variable values in column 1.
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Weight Variables 0

Variables used to perform weighted regressions are known as weight variables. All 
weight variables must be defined along with other variables in the Variables window. 

Specifying the
Weight Variable

to Use

The use of weighting is specified by the Equation section code, which can call weight 
variables defined under Variables. Weight variables are selected from the fit 
statement, using the syntax

fit f to y with weight w

where w is the weight variable defined under Variables. See � Equations� on page 193 
for additional details on how to define the fit statement.

Generally, a weight variable is defined as the reciprocal of either the observed 
dependent variable or its square. For example, if y=col(2) is the observed dependent 
variable, the weighting variable can defined as 1/col(2) or as 
1/col(2)^2.

For a demonstration of weighting variable use, see � Example 2: Weighted 
Regression� on page 224.

Defining Optional
Weight Variables

You can define more than one possible weight variable, and select the one to use from 
the Regression Options dialog box. Simply create multiple weight variables, then 
create alternate fit statement entries selecting the different weight variables in the 
Equations window. For more information on creating alternate fit statements, see 
�Defining Alternate Fit Statements � on page 194.

When to Use
Weighting

Least squares regressions assumes that the errors at all data points are equal. When 
the error variance is not homogeneous, weighting should be used. If variability 
increases with the dependent variable value, larger dependent variable values will 
have larger residuals. Large residuals will cause the squared residuals for large 
dependent variable values to overwhelm the small dependent variable value residuals. 
The total sum of squares will be sensitive only to the large dependent variable values, 
leading to an incorrect regression.

You may also need to weight the regression when there is a requirement for the curve 
to pass through some point. For example, the (0,0) data point can be heavily 
weighted to force the curve through the origin.

Σ Note that if you use weighted least squares, the regression values are valid, but the 
statistical values produced for the curve are not.

The Weighting
Process: Norm and
Residuals Changes

The weight values are proportional to the reciprocals of the variances of the 
dependent variable. Weighting multiplies the corresponding squared term in the sum 
of squares, dividing the absolute value of the residual by its standard error. This 
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causes all terms of the sum of squares to have a similar contribution, resulting in an 
improved regression.

For weighted least squares, the weights w are included in the sum of squares to be 
minimized.

When weighting is used, the norm that is computed and displayed in the Progress 
dialog box and initial results is , and includes the effect of weighting. The 
residuals computed are the weighted residuals .

Initial Parameters 0

The code under the Initial Parameters section specify which equation coefficients and 
constants to vary and also set the initial parameter values for the regression.

To enter parameters, select the Initial Parameters window, then type the parameters 
definitions using the form:

parameter=initial value

All parameters must appear in the equation model. All equation unknowns not 
defined as variables or constants must be defined in Initial Parameters.   

Initial Parameter
Values

For the initial values, a �best guess� may speed up the regression process. If your 
equation is relatively simple (only two or three parameters), the initial parameter 
values may not be important. For more complex equations, however, good initial 
parameter values can be critical for a successful convergence to a solution.

Automatic Parameter
Estimation

All built-in equations use a technique called automatic parameter estimation , which 
computes an approximation of the function parameters by analyzing the raw data. 
You can indicate the parameter value you wish to appear as the Automatic settting by 
typing two single quotes followed by the string Auto after the parameter setting. For 
example, entering the parameter line

a=max(y) ''Auto

tells the Regression Options dialog box to use max(y) as the Automatic parameter 
value for a.

This technique is further described under �Automatic Determination of Initial 
Parameters� on page 202.
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Alternate Parameter
Values

You can insert alternate parameter values that appear in the Regression Options 
dialog box Initial Parameter Values drop-down lists. To add an alternate, insert a new 
line after the default value, then type two single quotes, followed by the alternate 
parameter setting. For example, the line

d=-F(0)[2] ''Auto
''d=0.01

causes an alternate value of 0.01 to appear in the Regression Options dialog box 
Inital Parameter Values drop-down list for d.

Alternate parameter values are auotmatically inserted when different parameter 
values are entered into the Regression Options dialog box.

Constraints 0

Linear parameter constraints are defined under the Constraints section. A maximum 
of 25 constraints can be entered. Use of constraints is optional.

Constraints are used to set limits and conditions for parameter values, restricting the 
regression search range and improving regression speed and accuracy. Liberal use of 
constraints in problems which have a relatively large number of parameters is a 
convenient way to guide the regression and avoid searching in unrealistic regions of 
parameter space. 

Valid Constraints A constraint must be a linear equation of the parameters using an equality ( =) or 
inequality (< or >). For example, the following constraints for the parameters a, b, c, 
d, and e are valid:

a<1
10∗b+c/20 > 2
d−e = 15
a>b+c+d+e
whereas

a∗x<1

is illegal since x is not a constant, and

b+c^2>4
d∗e=1

are illegal because they are nonlinear.

Σ Although the curve fitter checks the constraints for consistency, you should still 
examine your constraint definitions before executing the regression. For example, the 
two constraints:
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a<1
a>2

are inconsistent. The parameter a cannot be both less than 1 and greater than 2. If 
you execute a regression with inconsistent constraints, a message appears in the 
Results dialog box warning you to check your constraint equations.

Other Options 0

You can use several special options to influence regression operation. The different 
options can be used to speed up or improve the regression process, but their use is 
optional. The three options are:

➤ Iterations, the maximum number of repeated regression attempts.

➤ Step Size, the limit of the initial change in parameter values used by the 
regression as it tries different parameter values.

➤ Tolerance, one of the conditions that must be met to end the regression process. 
When the absolute value of the difference between the norm of the residuals 
from one iteration to the next is less than the tolerance, this condition is satisfied 
and the regression considered to be complete.

Options are entered in the Options section edit boxes. The default values are 
displayed for new equations. These settings will work for most cases, but can be 
changed to overcome any problems encountered with the regression, or to perform 
other tasks, such as evaluating parameter estimation.

Figure 9�8
Entering Iteration, Step Size,

and Tolerance Options
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Iterations Setting the number of iterations, or the maximum number of repeated regression 
attempts, is useful if you do not want to regression to proceed beyond a certain 
number of iterations, or if the regression exceeds the default number of iterations.

The default iteration value is 100. To change the number of iterations, simply enter 
the maximum number of iterations in the Iterations edit box. 

Evaluating Parameter
Values Using 0

Iterations

Iterations must be non-negative. However, the setting Iterations to 0 causes no 
iterations occur; instead, the regression evaluates the function at all values of the 
independent variables using the parameter values entered under the Initial 
Parameters section and returns the results.

If you are trying to evaluate the effectiveness of automatic parameter estimation 
function, setting Iterations to 0 allows you to view what initial parameter values were 
computed by your algorithms.

Using zero iterations can be very useful for evaluating the effect of changes in 
parameter values. For example, once you have determined the parameters using the 
regression, you can enter these values plus or minus a percentage, run the regression 
with zero iterations, then graph the function results to view the effect of the 
parameter changes.

Step Size The initial step size used by the Marquardt-Levenberg algorithm is controlled by the 
Step Size option. The value of the Step Size option is only indirectly related to 
changes in the parameters, so only relative changes to the step size value are 
important.

The default step size value is 100. To change the step size value, type a new value into 
the edit box. The step size number equals the largest step size allowed when changing 
parameter values. Changing the step size to a much smaller number can be used to 
prevent the curve fitter from taking large initial steps when searching around 
suspected minima. 

For an example of the possible effects of step size, see � Curve Fitting Pitfalls� on page 
219.

If you are familiar with this algorithm, step size is the inverse of the Marquardt 
parameter.

Tolerance The Tolerance option controls the conditions that must be met in order to end the 
regression process. When the absolute value of the difference between the norm of 
the residuals from one iteration to the next is less than the tolerance, the regression is 
considered to be complete. 
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The curve fitter uses two stopping criteria:

➤ When the absolute value of the difference between the norm of the residuals 
(square root of the sum of squares of the residuals), from one iteration to the 
next, is less than the tolerance value, the iteration stops.

➤ When all parameter values stop changing in all significant places, the regression 
stops. 

When the tolerance condition has been met, a minimum has usually been found.

The default value for tolerance is 0.0001. To change the tolerance value, type the 
required value in the Tolerance edit box. The tolerance number sets the value that 
must be met to end the iterations.

More precise parameter values can be obtained by decreasing the tolerance value. If 
there is a sharp sum of squares response surface near the minimum, then decreasing 
the tolerance from the default value will have little effect. 

However, if the response surface is shallow about the minimum (indicating a large 
variability for one or more of the parameters), then decreasing tolerance can result in 
large changes to parameter values.

For an example of the possible effects of tolerance, see � Curve Fitting Pitfalls� on 
page 219.

Automatic Determination of Initial Parameters 0

SigmaPlot automatically obtains estimates of the initial parameter values for all built-
in equations found in STANDARD.JFL. When automatic parameter estimation is 
used, you no longer have to enter static values for parameters yourself�the 
parameters determine their own values by analyzing the data. 

Σ Note that it is only important that the initial parameter values are robust among 
varying data sets, i.e., that in most cases the curve fitter converges to the correct 
solution. The estimated parameters only have to be a �best guess� (somewhere in the 
same ballpark as the real values, but not right next to them).

You can create your own methods of parameter determination using the new 
transform function provided just for this purpose. 

The general procedure is to smooth the data, if required, and then use functions 
specific to each equation to obtain the initial parameter estimates. 

Consider the logistic function as an example. This function has the stretched �s� 
shape that changes gradually from a low value to a high value or vice versa. 
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The three parameters for this function determine the high value (a), the x value at 
which the function is 50% of the function�s amplitude (x0) and the width of the 
transition (b). As expressed in the transform language, the function is entered into 
the Equation window as

f=a/(1+exp(-(x-x0)/b))
fit f to y

Noise in the data can lead to significant errors in the estimates of x0 and b. 
Therefore, a smoothing algorithm is used to reduce the noise in the data and three 
functions are then used on the smoothed data to obtain the parameter estimates. 

To estimate the parameter a the maximum y value is used. The x value at 50% of the 
amplitude is used to estimate x0, and the difference between the x values at 75% and 
25% of the amplitude is used to estimate b. As entered into the Initial Parameters 
window, these are

a=max(y) ''Auto
b=xwtr(x,y,.5)/4 ''Auto
x0=x50(x,y,.5) ''Auto

Both the fwhm and xwtr transform functions have been specifically designed to aid 
the estimation of function parameters. For more details on these specialized 
transform functions, see �Curve Fitting Functions� on page 25.

The ''Auto comment that follows each parameter is used to identify that parameter 
value as the Automatic setting from within the Regression Options dialog box.

Note that these values may not at all reflect the final values, but they are approximate 
enough to prevent the curve fitter from finding false or invalid results.
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Notes 0
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Regression Lessons

Lesson 1: Linear Curve Fit 0

This tutorial lesson is designed to familiarize you with regression fundamentals. The 
sample graph and worksheet files for the tutorials are located in the NONLIN.JNB 
Regression Examples notebook provided with SigmaPlot.

In this lesson, you will fit a straight line to existing data points.

1. Open the Tutorial 1 Graph in the NONLIN.JNB notebook and examine the 
graph. The points appear to nearly follow a straight line. 

2. Choose the Statistics menu Regression Wizard command or press F5. The 
Regression Wizard dialog box displays lists of equations by category. If the Lin-
ear equation is not already selected, select the Polynomial category and select 

Figure 10�1
The NONLIN.JNB Notebook

10
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Linear as the equation name. 

3. Click Next to proceed. The next panel prompts you to pick your x, or indepen-
dent variable. Click the curve on the page to select it. Note that clicking the 
curve selects both the x and y variables for you.

Figure 10�2
Selecting an Equation in the

Regression Wizard

Figure 10�3
The Graph with

Unfitted Data Points
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4. Click Next. The Iterations dialog box appears, displaying the progress of the fit-
ting process. When the process is completed, the initial regression results are dis-
played.

5. Examine the results. The first result column is the parameter values; the inter-
cept is −.94 and the slope is 1.24.

The next column is an estimate of the standard error for each parameter. The 
intercept has a standard error of about 0.36�not that good�and the slope has 
a standard error of about 0.10, which isn't bad.   

The third column is the coefficient of variation (CV%) for each parameter. This 
is defined as the standard error divided by the parameter value, expressed as a 
percentage. The CV% for the intercept is about 38.2%, which is large in com-

Figure 10�4
Selecting the

Variables to Fit

Figure 10�5
Examining Initial Results
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parison to the CV% for the slope (about 8.7%).

The dependencies are shown in the last column. If these numbers are very close 
to 1.0, they indicate a dependency between two or more parameters, and you 
can probably remove one of them from your model.

Adding a Parameter
Constraint

To make y always positive when x is positive, you cannot have a negative y intercept. 
You can recalculate the regression with this condition by constraining the parameter 
y0 to be positive. That way y will never be negative when x>0.

1. From the initial results panel, click Back. The variables panel is displayed.

2. Click the Options button. The Options dialog box is displayed. Enter a value of

y0>0

into the Constraints edit box. This defines the constraint y0>0, which forces the 

y intercept to be positive.  

3. Click OK, then click Next to refit the data with a straight line, this time subject 
to the constraint y0>0. When the initial results are displayed, the value for y0 is 

now about 9.3 × 10 -9, very close to zero, and the slope has slightly decreased to 
a value of approximately 0.98.

 

Figure 10�6
Adding a Parameter

Constraint Option to the
Regression Options dialog

box

Figure 10�7
The Results

of the Second Fit
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4. Select Constraints; the Constraints dialog box appears with the constraint y0 >0 
flagged with the label �(active)� indicating that it was used in the nonlinear 
regression. 

Note that nonlinear regressions may find parameters that satisfy the constraints 
without having to activate some or all of the constraints. Constraints that are not 
used are not flagged as (active).

5. Select OK to return to the Nonlinear Regression Results dialog box, then click 
Next to proceed. 

Saving Results 6. You can select the results to save for a regression. These results are destroyed by 
default each time you run another regression equation.

You can save some of your results to a worksheet, and other results to a text 
report. To save worksheet results, make sure the results you want saved are 
checked in the results list. You have the option to save parameter values, pre-
dicted dependent (y) variable values for the original independent (x) variable, 
and the residuals about the regression for each original dependent variable. 

7. To save a text report, make sure the Report option is checked. The report for a 
nonlinear regression lists all the settings entered into the nonlinear regression 
dialog box, a table of the values and statistics for the regression parameters, and 
some regression diagnostics.

You can also save a copy of the regression equation you used to the same section 
as the page or worksheet on which you ran the regression. Check the Add Equa-
tion to Notebook option to save a copy of your equation.

Click Next to proceed.

Figure 10�8
The Constraints dialog box

Figure 10�9
Saving the Nonlinear

Regression Results
Using the Keep Regression

Results dialog box
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Graphing Results 8. To plot the regression function on the existing graph, make sure the Add curve 
to Graph #1 option is checked. 

Click Finish display your report and graphed results.

Figure 10�10
The Graph Results

Panel
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 Comparing
Regression Wizard
Results with Linear
Regression Results

The original data for this graph could have been fitted automatically in SigmaPlot 
with a linear regression using the Statistics menu Linear Regression command. 
However, because you cannot specify constraints for the regression coefficients, a first 
order regression gives different results. 

To add a linear regression to your original data plot:

1. Select the plot of your original data by clicking it on the graph, then choose the 
Statistics menu Linear Regression command.

Figure 10�11
Regression

Results for a
Linear

Regression
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2. Select to draw a 1st order regression and pick a dotted line type for the regres-
sion line.

3. Select OK to accept the regression settings, then view the graph. Note the differ-
ence between the regression and the fitted line (use the View menu to zoom in 
on the graph if necessary). 

Note that if you had not used a parameter constraint, the result of the nonlinear 
regression would have been identical to the linear regression.

If desired, you can now save the graph and worksheet to a file using the File menu 
Save As command.

Figure 10�12
Selecting a Linear

Regression

Figure 10�13
Comparing the Fitted

Curve with a First
Order Regression
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Lesson 2: Sigmoidal Function Fit 0

This tutorial leads you through the steps involved in solving a typical nonlinear 
function for a �real world� scenario.

Examining and
Analyzing the Data

The data used for this tutorial represents blood pressure measurements made in the 
neck (carotid sinus pressure), and near the outlet of the heart (the mean arterial 
pressure).

These pressures are inversely related. If the blood pressure in your neck goes down, 
your heart needs to pump harder to provide blood flow to your brain. Without this 
immediate compensation, you could pass out every time you stood up.

Sensors in your neck detect changes in blood pressure, sending feedback signals to 
the heart. For example, when you first get out of bed in the morning, your blood 
tends to drain down toward your legs. This decreases the blood pressure in your 
neck, so the sensors tell the heart to pump harder, preventing a decrease in blood flow 
to the brain.

You can do an interesting experiment to demonstrate this effect. Stand up and relax 
for a minute, then take your pulse rate. Count the number of pulses in 30 seconds, 
then lie down and immediately take your pulse rate again. Your pulse rate will 
decrease as much as 25%. (Your heart doesn't have to pump as hard to get blood to 
the brain when you are lying down.)

1. Open the Tutorial 2 graph file by double-clicking the graph page icon in the 
Tutorial 2 section in the NONLIN.JNB notebook. Examine the graph. The two 
pressures are clearly inversely related. As one rises, the other decreases. The shape 
appears to be a reverse sigmoid, suggesting the use of a sigmoidal equation. 

A sigmoid shaped curve looks like an S that has had its upper right and lower left 
corners stretched. In this case, the S is backwards, since it starts at a large value, 
then decreases to a smaller value.
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 Various forms of the sigmoid function are commonly used to describe sigmoids. 
In this case, you will use the four parameter sigmoid function provided in the 
standard regression library.

2. Right-click the curve and choose Fit Curve. The Regression Wizard appears. 

Select Sigmoidal as your equation category, and Sigmoid, 4 Parameter as your 
equation.

Figure 10�14
Inverse Sigmoidal Curve

Showing the Relationship
Between Arterial Pressure

and Carotid Sinus Pressure

Figure 10�15
Choosing Fit Curve
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3. Click Next twice. If you have correctly selected the curve, the Iterations dialog 
box appears, displaying the value for each parameter and the norm for each iter-
ation. 

Note that the iterations proceed more slowly than those for the linear fit. This is 
because the equation is much more complex and there are more parameters. 
Watch the norm value decrease�this number is an index of the fit closeness, and 
decreases as the fit improves. 

When the fit condition is satisfied, the initial results are displayed. 

4. Examine the results. The first column displays the parameter value, and the next 
column displays the estimated standard error. The third column is the coeffi-
cient of variation (CV%) for each parameter.  (Note that these CV% values are 
unrealistically good�the largest is about 3.9%. Generally, CV% values for 
physiological measurements are greater than 5%.) 

True nonlinear regression problems (like this sigmoidal fit, but unlike a linear 
fit) have CV% values that are not absolutely correct. However, they still can be 
used to compare the relative variability of parameters. For example, b (3.9) is 
more than eight times as variable as  c (0.45).

None of the dependencies shown in the last column are close to 1.0, suggesting 
that the model is not over-parameterized.

Figure 10�16
Selecting the Sigmoid, 4

Parameter Equation

Figure 10�17
The Fit Results for the Four

Parameter Sigmoid
Function
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5. To save the regression results and graph the curve, click Finish. A report along 
with worksheet data and a fitted curve are added to your notebook, worksheet 
and graph.

Fitting with A
Different Equation

More than a single regression can be run and plotted on a graph. Typically, this is 
done to gauge the effects of changes to parameter values, or to compare the effect of a 
different fit equation.

In this case, try a five parameter logistic function instead of the four parameter 
version.

1. Press F5. The Regression Wizard appears. Select Sigmoid, 5 Parameter as your 
equation.

2. Click Next, then click the Options button. Enter a value of 5 into the Iterations 
box.

Figure 10�18
The Fitted Curve for the

Sigmoidal Data
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The iterations option specifies the maximum number of iterations to perform 
before displaying the current results. You can see if a long regression is working 
correctly by limiting the number of iterations to perform. If the regression does 
not complete within the number of iterations specified, you can continue by 
clicking the More Iterations option in the initial results panel. Click OK.

3. Click Next to calculate the new fit. Note that the Iteration dialog box now says 
�Iteration n of 5.� Each iteration also requires much more time to calculate, and 
more iterations are required to produce a result.

After five iterations, the initial results panel is displayed. Note that the More 
Iterations option is no longer dimmed. Click More Iterations for five more itera-
tions. 

Figure 10�19
The Regression

Options dialog box

Figure 10�20
Results of the Five
Parameter Logistic

Equation Fit After
Five Iterations
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The regression continues to completion, converging after four more iterations.

4. Examine the results. The norm value, standard deviations and CV% values are 
smaller than for the four parameter fit, indicating that this may be a better fit. 
However, two of the dependencies are close to 1.0, suggesting that the fifth 
parameter may not have been needed.  

5. Click Finish to save the results of this regression. Another report, more data, and 
the curve for this regression equation are all added to your notebook.

To distinguish between the two regression lines, double-click one of them and 
change the line color to blue, then use the Plot drop-down list to change the 
other regression curve to red.

Compare the curve fits visually. As expected, the five parameter function appears 
to fit slightly better. 

Figure 10�21
Results of the Five
Parameter Logistic
Equation Fit More

Iterations

Figure 10�22
The SigmaPlot Graph with

both Four and Five
Parameter Logistic

Equation Fit Results
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Advanced Regression Examples 

Curve Fitting Pitfalls 0

This example demonstrates some of the problems that can be encountered during 
nonlinear regression fits.

Peaks in chromatograph data are sometimes fit with sums of Gaussian or Lorentzian 
distributions. A simplified form of the Lorentzian distribution is:

where x0 is the location of the peak value.

A graph of the distribution for x0 = 0 is shown in Figure 11�1.

1. Open the Pitfalls worksheet and graph by double-clicking the Pitfalls Graph in 
the NONLIN.JNB notebook. Note the positions of data points on the curve.

2. Open the Simplified Lorentzian regression equation by double-clicking it in the 
Regressian Examples notebook. The Regression Wizard opens and displays the 
variables panel (see Figure 11�7 on page 222). 

3. Click one of the symbols on the graph so that the Variables selected are Columns 
1 and 2.

The object is to determine the peak location x0 for the data. Since this data was 

generated from the Lorentzian function above using x0 = 0, the regression 

should always find the parameter value x0 = 0. 

How the Curve Fitter
Finds x0

To find x0, the the curve fitter computes the sum of squares function:
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as a function of the parameter x0. The graph of this result using the x and y data 

is provided in Figure 11�1. The curve fitter then searches this parameter space 
for any x0 value where a relative minimum exists.

The sum of squares for x0 has two minima�an absolute minimum at x0 = 0 and 

a relative minimum at x0 = 4.03�and a maximum at 2.5. As the curve fitter 

searches for a minimum, it may stumble upon the local minimum and return an 
incorrect result. If you start exactly at a maximum, the curve fitter may also 
remain there. 

4. False convergence caused by a small step size Click the Options button. Note 
that the value of x0 is set to 1000, and the Step Size option is set to 0.000001. 

Click OK, then click Next.

Using the large initial value of x0 and a small step size, the curve fitter takes one 

small step, finds that there is no change in the sum of squares using the default 
value for tolerance (0.0001), and declares the tolerance condition is satisfied. 
The very low slope in the sum of squares at this large x0 value causes the regres-

Figure 11�1
The Plot of the Sum of
Squares for x0 = 0 of a

Simplified Lorentzian
Distribution
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The Regression Options

dialog box Showing
Step Size Set to 0.00001
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sion to stop. 

5. False convergence caused by a large step size and tolerance Click Back, then 
click the Options button.  Open the Step Size list and select 100; this is the 
default step size value.

6. Click OK, then click Next. The curve fitter takes a large step, reaches negative x0 

values, and finds a value x0 = -546 for which the tolerance is satisfied.

The sum of squares function asymptotically approaches the same value for both 
large positive and negative values of x, so the difference of the sum of squares for 
x0 = 1000 and x0 = -546 is within the default value for the tolerance. 

7. Reducing tolerance for a successful convergence Click Back, then click 

Figure 11�3
The Results Using

a Step Size of 0.00001

Figure 11�4
Selecting a Step Size of

100

Figure 11�5
The Results

Using a Step Size of 100
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Options again. Change the Tolerance value to 0.000001, then click OK.

8. Click Next. The regression continues beyond x0 = -546 and successfully finds 

the absolute minimum at x0 = 0.

Summary When you used a poor initial parameter value, you needed to use a large initial step 
size to get the regression started, and you had to decrease the tolerance to keep the 
regression from stopping prematurely. Poor initial parameters can arise also when 
using the Automatic method of determining initial parameters as well as when 
constant values are used.

You will now use initial parameter values which result in convergence to a local 
minimum and a local maximum.

Figure 11�6
Changing the Tolerance to

0.0001

Figure 11�7
The Results of Using a Step

Size of 100
and Tolerance of 0.000001
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1. Finding a local minimum Click Back, then click the Options button. Change 
the initial value of x0 to 10 using the drop down Parameter Values list.

2. Select the Tolerance option and change the tolerance back to the default value of 
0.0001, then click OK.

3. Click Next. The regression converges to x0 = 4.03, which corresponds to the 

local minimum. 

In this example, you know that a local minimum was found by viewing the sum 
of squares function for the single parameter x0. However, when there are many 

parameters, it is usually not obvious whether an absolute minimum or a local 
minimum has been found.

4. Finding a local maximum Click Back, then click the Options button. Change 
the initial parameter value of x0 to 2.5, then click OK.

Figure 11�8
Changing the Initial

Parameter Value of x 0 to
10 and the Tolerance to

0.0001

Figure 11�9
The Nonlinear Regression

Results Using an Initial
Parameter Value of x0 = 10
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5. Click Next. Because this initial parameter value happens to correspond to the 
maximum of the sum of squares function, the regression stops immediately. The 
slope is zero within the default tolerance, so the curve fitter falsely determines 
that a minimum has been found. 

6. Finding the absolute minimum Click Back, then click Options. Change the 
initial value of x0 to 2.0.  

7. Click OK to close the Options dialog box, then click Next to execute the regres-
sion. The initial parameter value is reasonably close to the optimum value, so the 
regression converges to the correct value x0 = 0.0. 

Summary These last examples demonstrate how the curve fitter can find a local minimum and 
even a local maximum using poorly chosen initial parameter values. 

Example 2: Weighted Regression 0

The data obtained from the lung washout of intravenously injected dissolved Xenon 
133 is graphed in the Weighted Graph in the Weighted Regression section of the 
NONLIN.JNB notebook.

1. Open the Weighted worksheet and graph by double-clicking the graph page 

Figure 11�10
The Results Using

an Initial Parameter
Value of x0 = 2.5

Figure 11�11
The Results Using

an Initial Parameter
Value of x0 = 2.0
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icon in the Weighted section of the NONLIN.JNB notebook.

The data in the graph displays the compartmental behavior of Xenon in the 
body. Three behaviors are seen: the wash-in from the blood (rapid rise), the 
washout from the lung (rapid decrease), and the recirculation of Xenon shunted 
past the lung (slow decrease). 

The sum of three exponentials (a triple exponential) is used as a compartmental 
model:

Least squares curve fitting assumes that the standard deviations of all data points 
are equal. However, the standard deviation for radioactive decay data increases 
with the count rate. Radioactive decay data is characterized by a Poisson random 
process, for which the mean and the variance are equal. Weighting must be used 
to account for the non-uniform variability in the data. These weights are the 
reciprocal of the variance of the data.

For a Poisson process, the variance equals the mean. You can use the inverse of 
the measurements as an estimate of the weights. The initial weighting variable 
only needs to be proportional to the inverse variance.

Figure 11�12
The Weighted Graph

CountRate a1e 1– 1t a2e 1– 2t a3e 1– 3t+ +=
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2. Double-click the Weighted Triple Exponential equation in the Weighted Regres-
sion section. 

Click the Edit Code button, and examine the Variable value

w = 1/(col)2

This sets w to equal the reciprocal of the data in column 2. Click Cancel to close 
the dialog box.

3. Click the datapoints to select your variables. To use the w variable as the weight-
ing variable, click Options, and select w as the Fit With Weight value. 

Click OK to close the dialog box.

4. Click Next to run the regression. The curve fitter finds a solution quickly. Click 
Finish to complete the regression.

5. What would be the result without weighting? Press F5, then click Next and click 
Options. Change the weighting to (none), then click OK. 

6. Click Finish. The curve fitter goes through many more iterations. When it is 
completed, view the Weighted graph page. 

The graph shows the nonlinear regression results with and without weighting. 
The weighted results fit the very small recirculation data (represented by the 
third exponential) quite well. However, when weighting is not used, the curve 

Figure 11�13
The Weighted Triple

Exponential Equation

Figure 11�14
Selecting a Weight Variable
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fitter ignored the relatively small values in the recirculation portion of the data, 
resulting in a poor fit. 

Example 3: Piecewise Continuous Function 0

The data obtained from the wash-in of a volatile liquid into a mixing chamber is 
modeled by three separate equations, representing three line segments joined at their 
endpoints:

where:

1. Open the Piecewise Continuous worksheet and graph by double-clicking the 

Figure 11�15
Comparing the Function

Results of Weighted
and Unweighted

Nonlinear Regression Fits
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graph page icon in the Piecewise Continuous section of the NONLIN.JNB 
notebook. The data appears to be described by three lines, representing the three 
regions: before wash-in, during wash-in, and following wash-in. 

2. View the notebook, and double-click the Piecewise Continuous Regression 
Equation. Click the datapoints to select the data, then click Next to run the 
regression. The model, with parameters x 1, x2, x3, x4, T1, and T2, is fit to the 

data.

3. Click Finish. When the fit is complete, view the graph page. A continuous curve 
fits the three segments of the data. 

Figure 11�16
The Weighted Triple

Exponential Equation

Figure 11�17
The Data in the Piecewise
Continuous Graph Fitted

with the Equations
for Three Lines



Advanced Regression Examples

Example 4: Using Dependencies 229

Example 4: Using Dependencies 0

This example demonstrates the use of dependencies to determine when the data has 
been �over-parameterized.� Too many parameters result in dependencies very near 
1.0. If a mathematical model contains too many parameters, a less complex model 
may be found that adequately describes the data.

Sums of exponentials are commonly used to characterize the dynamic behavior of 
compartmental models. In this example you model data generated from the sum of 
two exponentials with one, two, and three exponential models, and you examine the 
parameter dependencies in each case.

Dependencies Over a
Restricted Range

The first fit is made to data over a restricted range, which does not reveal the true 
nature of the data.

1. Open the Dependencies worksheet and graph by double-clicking the graph page 
icon in the Dependencies section of the Regression Examples notebook. The 
data generated from the sum of two exponentials:

is graphed on a semi-logarithmic scale over the range 0 to 3.

Although the data is slightly curved, the �break� associated with the two distinct 
exponentials is not obvious. 

2. Right-click the curve and choose Fit Curve to open the Regression Wizard.

3. Select the Exponential Decay category and the Single, 2 Parameter exponential 

f t( ) 0.9e t– 0.1e 0.2t–+=

Figure 11�18
The Dependencies

Graph Showing the Data
for the Sum of Two

Exponentials
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decay equation, then click Next twice. 

The results show that the dependencies are not near 1.0, indicating that the sin-
gle exponential parameters, a1 and b1, are not dependent on one another. 

4. Click Back twice, and change the equation to the Double, 4 parameter exponen-
tial decay equation. Click Next twice.

Figure 11�19
Selecting the 2 Parameter
Single Exponential Decay

Equation

Figure 11�20
The Results of Fitting

the Data
to a Single Exponential

Figure 11�21
Selecting the 4 Parameter
Double Exponential Decay

Equation
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The results show that the parameter dependencies for the double exponential are 
acceptable, indicating that they are unlikely to be dependent, and that using a 
double exponential produces a better fit (the curve fitter in fact finds the exact 

parameter values used to generate the data, producing a perfect fit with an R2 of 
1).  

Dependencies Over
an Extended Range

5. Click Back twice, and change the equation to a Triple, 6 Parameter exponential 
decay equation. Click Next twice. 

The results show that the parameter dependencies for a, b, c, and  d are 1.00, 

suggesting that the three exponential model is too complex and that one expo-
nential may be eliminated. Click Cancel when finished. 

Figure 11�22
The Results of Fitting the

Data to the
Sum of Two Exponentials

Figure 11�23
Selecting the 6 Parameter

Triple Exponential Decay
Equation

Figure 11�24
The Results of Fitting the

Data to the
Sum of Three Exponentials
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Example 5: Solving Nonlinear Equations 0

You can use the nonlinear regression to solve nonlinear equations. For example, given 
a y value in a nonlinear equation, you can use the nonlinear regression to solve for the 
x value by making the x value an unknown parameter.

Consider the problem of finding the LD 50 of a dose response experiment. The LD 50 
is the function of the four parameter logistic equation:

where x is the dose and f(x) is the response, then using nonlinear regression, you can 
find the value for x where:

1. Open the Solving Nonlinear Equations worksheet and graph file by double-
clicking the graph page icon in the Solving Nonlinear Equations section of the 
NONLIN.JNB notebook. Note that the value for x at y = 50 appears to be 
approximately 150. 

f x( ) a1

1+e
b x c–( )

------------------------ d+=

50 a1

1+e
b x c–( )

------------------------ d+=

Figure 11�25
The Solving Nonlinear

Equations Graph, a Four
Parameter Logistic Curve
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2. Double-click the Solving Nonlinear Equation and click the Edit Code button. 

3. Examine the regression statements. Note that x is a parameter, y = 0, and the fit 
equation is modified:

f = p1/(1 + exp(p2∗(x−p3))) + p4 − 50

Since you are fitting f to y = 0, these statements effectively solve the original 
problem for x when y = 50. The values for parameters  a, b, c, and d were 
obtained by fitting the four parameter logistic equation to a given set of dose 
response data.

4. Click Run to execute the regression. The parameter solution is the unknown x. 
For this example, x is approximately 149.5.

Figure 11�26
The Solving Nonlinear

Equations Statements Used
to Solve Four Parameter

Logistic Equation with
Known Parameters

Figure 11�27
The Results the Solving

Nonlinear Equations
Example
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Example 6: Multiple Function Nonlinear Regression 0

You can use the Regression Wizard to fit more than one function at a time. This 
process involves combining your data into additional columns, then creating a third 
column which identifies the original data sets.

This example fits three separate equations to three data sets. 

1. Open the Multiple Function worksheet and graph by double-clicking the graph 
page icon in the Multiple Function section of the NONLIN.JNB notebook. 
The data points are for three dose responses.

Columns 1 and 2 hold the combined data for the three curves. Column 3 is used 
to identify the three different data sets. A 0 corresponds to the first dataset, 1 to 
the second, and 2 to the third.

2. Double-click the Multiple Functions Equation. The Regression Wizard opens 
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Figure 11�28
The Multiple Function

Graph with Three
Curves
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with the variables panel displayed. Click Edit Code. 

3. Examine the fit statements. The fit equation is an if statement which uses differ-
ent equations depending on the value of d, which is the data set identifier vari-
able. If d = 0, the data is fit to f1: if d = 1, the data is fit to f2; and if d = 2, the 
data is fit to f3.

The functions share the T and n parameters, but have individual E parameters of 
E1, E2, and E3. 

4. Click Run to execute the regression. The fit proceeds slowly but fits each data set 
to the separate equation. Click Next to ensure that the Predicted function results 
are saved to the worksheet, then Next again and make sure no graph is being cre-
ated. Click Finish to end the fit.

5. To graph the results, you need to create a plot of the predicted results. View the 
page and select the graph, then create a straight line plot of rows 1-12 of column 

Figure 11�29
The Multiple

Function Statements
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1 versus rows 1-12 of the predicted results column.

6. Create two more line plots of rows 13-23 and 24-34. The results plots should 

appear as three separate curves.  

Figure 11�30
Creating a Plot of a

Restricted Data
Range

Figure 11�31
A SigmaPlot Graph

of the Predicted
Results of the

Multiple Function
Equation
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Example 7: Advanced Nonlinear Regression 0

Consider the function:

When fitted to the data in columns 1 and 2 in the Advanced Techniques worksheet, 
this equation presents several problems:

➤ Parameter identifiability

➤ Very large x values

➤ Very large y error value range

These problems are outlined and solved below. 

If you want to view the regression functions for this equation, open the Advanced 
Techniques worksheet and graph in the Advanced Techniques section of the 
NONLIN.JNB notebook. Double-click the Advanced Techniques Equation to open 
the Regression Wizard. If you want to run the equation, use the graph of the 
transformed data.  

Overparameterized
Equations

The equation has four parameters, a, b, c, and d. The numerator in the exponential:

can have identical values for an infinite number of possible parameter combinations. 
For example, the parameter values:

b = c = 1 and d = 2 

and the values:

b = c = 2 and d = 1 

result in identical numerator terms.

The curve fitter cannot find a unique set of parameters. The parameters are not 
uniquely identifiable, as indicated by the large values for variance inflation factor 
(VIF), and dependency values near 1.0.

The solution to this problem is to multiply the d parameter with the other terms to 
create the equation:

f 1 e

-dx b cx+( )
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–=
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then treat the db and dc terms as single parameters. This reduces the number of 
parameters to three.

Scaling Large
Variable Values

The data used for the fit has enormous x values, around a value of 1 × 1024 (see 
column 1 in the worksheet above). These x values appear in the argument of an 
exponential which is limited to about ±700, which is much smaller than 10 24. 
However, when the curve fitter tries to find the parameter values which are 
multiplied with x, it does not try to keep the argument value within ±700. Instead, 
when the curve fitter varies the parameters, it overflows and underflows the argument 
range, and does not change the parameter values.

The solution to this problem is to scale the x variable and redefine some of the 
parameters. Multiply and divide each x value by 1 × 1024 to get:

If you let X = x(10-24), then the equation becomes:

If you let CD = 1024dc and A = 10−24a, the resulting scaled equation is simplified to:

The exponent argument now does not cause underflows and overflows. 

The graph of the transformed x data is displayed below the original data.

f 1 e

10
24–

x

10 24–
--------------– db dc10

24–
x

10 24–
--------------------+ 

 

10
24–

x

10
24–

-------------- a+

---------------------------------------------------------

–=

f 1 e

X db dc10
24

X+( )–

X 10
24–

a+
--------------------------------------------

–=

f 1 e

X db CDX+( )–
X A+

-------------------------------------

–=



Advanced Regression Examples

Example 7: Advanced Nonlinear Regression 239

Small Independent
Variable Values:

Weighting for Non-
Uniform Errors

The y values for the data range from very small values to very large values. However, 
for this problem, we know that the y values do not have the same errors�smaller y 
values have smaller errors.

The curve fitter fits the data by minimizing the sum of the squares of the residuals. 
Because the squares of the residuals extend over an even larger range than the data, 
small residual squared numbers are essentially ignored.

The solution to this non-uniform error problem is to use weighting, so that all 
residual squared terms are approximately the same size.

Fitting with a weighting variable of 1 /y2 (the inverse of y squared), which is 
proportional to the inverse of the variance of the y data, produces a better fit for low 
y value data.

Figure 11�32
The Graph Page

for the Advanced
Techniques Example
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To see the results of the regression without weighting, open the Options dialog box 
and change the weighting to (none) before finishing. 

Figure 11�33
The Results of the

ADVANCED.FIT
 with Weighting

Figure 11�34
The Graph Showing the

Results of Weighted
and Unweighted

Nonlinear Regressions

The dotted line indicates the
unweighted fit.
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Automating Routine Tasks

SigmaPlot OLE Automation technology provides you with a wide range of 
possibilities for automating frequently-performed tasks, using macros and user-
defined features.

You can take advantage of this flexibility to integrate SigmaPlot with other 
applications you have developed, as it provides an effective tool to customize or 
automate frequently-performed tasks.

SigmaPlot uses a VBA®-like macro language to access automation internally. 
However, whether you have never programmed, or are an expert programmer, you 
can take advantage of this technology through the Macro Recorder. 

This chapter describes how to use SigmaPlot�s Macro Recorder and integrated 
development environment (IDE). It also contains brief descriptions of related 
features accessible in the Macro window, including Sax Basic programming language, 
debugging tool, dialog box editor, and user-defined functions. There is extensive 
context-sensitive online help available for all these powerful features.

This chapter contains the following topics:

➤ �Using the Macro Recorder� on page 243

➤ �Running Your Macro� on page 245

➤ �Managing Your Macros� on page 246

➤ �About the Macro Window� on page 248

➤ �Viewing and Modifying a Recorded Macro � on page 252

➤ �Creating user-defined functions � on page 255

➤ �Using the Dialog Box Editor � on page 255

➤ �Using the Object Browser� on page 256

➤ �Using the Add Procedure Dialog Box � on page 256

➤ �Using the Debug Window� on page 257

12
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About the Macro Recorder 0

SigmaPlot�s Macro Recorder lets you record a series of keyboard and mouse actions in 
a macro and replay them whenever you need to. For example, if you want to produce 
a set of graphs for a monthly report using new data from a worksheet, or you want to 
apply a special set of formats to graphs that should share the same �look� � both of 
these tasks require that you repeat the same sequence of actions.

When you record a macro, it is saved as a script that you can edit. You can also create 
a macro directly in a script, using SigmaPlot Basic commands and functions.

About Macros 0

A macro is a set of procedures that SigmaPlot can run automatically with a single 
command. Most of the operations that you perform in SigmaPlot can be recorded. 
You can then play back, or run, the macro to repeat your recorded actions whenever 
you want, by using a menu command that you define. 

Nearly everything that you can do with SigmaPlot can be automated, because every 
SigmaPlot command has an equivalent macro command. By recording your own 
macros, you can shape the processing of data in SigmaPlot to meet your own needs.

Ways to Create
Macros

SigmaPlot provides three methods to create macros:

➤ Record a macro with the Macro Recorder

Turn on the Macro Recorder and perform the procedure that you want to store 
as a macro. For more information, see � Recording a Macro� on page 243

➤ Write a macro from scratch

Use the Sax Basic language, SigmaPlot macro commands, and the Integrated 
Development Environment (IDE) to write the macro instructions in the Macro 
window. For a brief introduction to writing macros, see � Creating user-defined 
functions� on page 255. From the Macro window, you can access a full context-
sensitive online Help and reference, including programming examples.

➤ Combine writing and recording to create the macro

You can record the steps that can be recorded in the Macro Recorder, then add 
program structure and a user interface by writing Basic code.

When to Record a
Macro

Record a macro any time that you find yourself regularly typing the same keystrokes, 
choosing the same commands, or going through the same sequence of operations.
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Creating and Editing Macros 0

When you create or edit existing macros, you use the Macros Options dialog box. 
From this dialog box you can record a new macro, locate and run existing macros, 
edit existing macros, and set the options for new and existing macros.

Macros Options
Dialog Box

The Macro Options dialog box is where you name or rename a macro, determine 
how you will access your macro, and where you will save the macro. The Macro 
Options dialog box also lets you save a description with the macro. You can assign the 
macro to a command on the Tools menu.

Using the Macro Recorder 0

The Macro Recorder records SigmaPlot actions in the same way a tape recorder 
records sound. When you run, or play, the macro, the Macro Recorder plays back the 
recorded sequence of instructions, just as the tape recorder plays back the recorded 
sound.

Before you Record Before you start recording the macro, analyze the task you want to automate. If the 
macro has more than a few steps, write down an outline of the steps. Then rehearse 
the sequence to make sure you have included every single action. It is surprisingly 
easy to omit steps unless you rehearse first, then test the saved macro. Although you 
can re-record the macro as often as you want, you will save time by writing down the 
tested procedure in advance.

When you have verified what you want in the macro, it�s time to record.

Recording a Macro Before you start, decide what to call the macro, where to assign (how to call) the 
macro, and where to save the macro file.

Recording a Macro
From a Notebook

To record a macro from the Tools menu:

1. Choose Macro from Tools menu, then click Record Macro.

The REC appears in the status area, indicating that the macro is recording your 
menu selections and keystrokes.

2. Complete the activity you want to include in this macro. 

For more hints on recording macros, see � Tips for Using the Macro Recorder� 
on page 248.

Figure 12�1
The Status Bar
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3. When you have completed all the tasks you want included in the macro, choose 
Macro from the Tools menu, ad click Stop Recording.

The Macro Recorder stops recording and the Macro Options dialog box 
appears.

4. Type a name for the macro in the Name text box.

Give the macro a descriptive name. You can use a combination of upper- and 
lowercase letters, numbers, and underscores. For example a macro that formats 
all of your graph legends to match a certain report might be called 
�Report1AddFormatToLegend�. 

5. If you want, enter a more detailed description in the Description text box.

6. If you want this macro to appear on the Tools menu, click the Assign To check 
box and enter the name of the command to appear on the Tools menu.

7. By default, macros are saved in the SigmaPlot Macro Library. To save in a differ-
ent location, select the location in the Saved In dialog box.

After you have finished recording the macro, you can save it globally (for use in 
all of SigmaPlot) or locally (for use in a particular notebook file).

8. Click OK.

When you return to the Notebook window, your macro appears in the Note-

Figure 12�2
The Macros Options

dialog box
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book

Running Your Macro 0

After you have recorded and saved a macro, it�s ready to run. You can run a macro in 
the following ways:

➤ Double-clicking a macro icon in a notebook, then selecting Run in the macros 
dialog box.

➤ From the Macros dialog box, via the Tools menu.

➤ Selecting a Macro command from the Tools menu.

➤ From the Macro window.

To run a macro from the Macros dialog box:

1. Choose Macro from the Tools menu, and click Macros. 

Figure 12�3
Macros associated with
notebooks appear in the

notebook structure. Double-
click a macro icon to open

the Macros dialog box.
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The Macros dialog box appears with a list of available macros.

2. In the Macro dialog box, highlight the macro to run.

3. Click Run.

To run a macro from a notebook:

1. From within a notebook, double-click the macro icon.

The Macro dialog box appears with the corresponding macro selected. 

2. Click Run.

If the macro does not have any errors or run into difficulties with your data, it 
will run to completion. 

Σ You can also run a macro from the Macro script window. This is useful for debugging 
the macro script. For more information, see �About the Macro Window� on page 
248.

Managing Your Macros 0

Storing Your Macros SigmaPlot gives you two places to store your macro: 

➤ SigmaPlot Macro Library

➤ Individual notebooks

Setting and Changing
Macro Options

You can change the macro description, the macro�s keyboard shortcut, and the name 
of the macro as it appears in on the Tools menu.

Figure 12�4
The Macros dialog box
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To set or change options for an existing macro:

1. Do one of the following:

➤ From a notebook window, double-click a macro.

➤ From the Tools menu, choose Macro, and then click Macros.

The Macros dialog box appears.

2. If you double-clicked the macro icon in a notebook icon, it is selected automati-
cally. Otherwise, highlight the macro in the list.

3. Click Options.

The Macro Options dialog box appears. 

4. From here you can do the following:

➤ Rename the macro.

➤ Add the macro to the Tools menu as a command.

To rename a macro:

➤ Type a new name in the Macro Options window and click OK.

To add the macro to the Tools menu:

➤ Select the Tools Menu Command check box, and then type a name for the 
menu command.

Figure 12�5
The Macros Options

dialog box
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Tips for Using the Macro Recorder 0

Sometimes a recorded macro behaves in ways that you don�t expect when you try to 
run it in a new context or with fresh data. The following tips will help you record 
macros that are more �generic:�

➤ Always plan the macro before you record it. 

➤ Select your data first, and then record the macro.

This makes your macros portable � the macro will do what it does on any 
selected object not just your specific task. The exception to this is when you 
want the macro to process the same location every time.

➤ Use the macro recorder as a learning tool.

When you look at the code that the recorder generates, you will learn how 
SigmaPlot works and how SigmaPlot Basic is implemented. The following chap-
ter delves into the process of recording and editing macros that you generate 
with the macro recorder. 

About the Macro Window 0

The Macro Window is the integrated development environment for SigmaPlot 
macros. When you record a macro, it is saved as a script that you can edit and test 
interactively in the SigmaPlot Macro Window. This window provides a fully-featured 
programming environment that uses SigmaPlot Basic as the core programming 
language. If you are familiar with Microsoft Visual Basic, most of what you know will 
apply as you use SigmaPlot�s macro language. 

The Macro Window is where you will view, write, test, and edit SigmaPlot macro 
code. The Macro Window functions like a text editor but has features that are 
specialized for programming SigmaPlot macros. When used with the Macro 
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Recorder, the Macro Window can be used to quickly produce simple and complex 
macro programs.

The Macro Window includes:

➤ A specialized programming editor.

➤ A context-sensitive help system and online command Reference.

➤ A graphical dialog box editor.

➤ A programming object browser.

➤ A program debugger.

All of the automated coding features in SigmaPlot return results to the Macro 
Window. For example:

➤ When you record a macro using the Macro Recorder, the results are written 
directly to the Macro Window. 

➤ When you use the Dialog Editor to describe your custom dialog box, the code 
for the dialog box is placed in the Macro Window. 

➤ If you debug a program that you have written, the debug features return results 
to Debug Window tabs. 

Figure 12�6
The Macro Window

The Macro Toolbar

Color-coded text
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The Macro
Window Toolbar

The Macro Window toolbar is located at the top of the Macro Window. It contains 
buttons grouped by function.

The following table describes the functions of the toolbar buttons in the Macro 
Window.

Figure 12�7
The Macro Window Toolbar

New 
Procedure

Pause/
Continue

Find Step Over Step to 
Cursor

Quick 
View

Dialog 
Box Editor

Reference

Start Stop Step In Step Out
Toggle 

Breakpoint
Object 

BrowserMacros

Toolbar button Description

New Procedure Opens the Add Procedure dialog box that lets you 
name the procedure and paste procedure code into your 
macro file

Start Runs the active macro and opens the Debug Window.

Pause/Continue Pauses and restarts a running macro. This button also 
pauses and restarts recording of SigmaPlot commands 
while using the Macro Recorder.

Stop Terminates recording of SigmaPlot commands in the 
Macro Recorder. Also, stops a running macro.

Find Opens the Find dialog where you can define a search 
for text strings in the Macro Window.

Step In Executes the current line. If the current line is a subrou-
tine or function call, execution will stop on the first line 
of that subroutine or call.

Step Over Executes to the next line. If the current line is a subrou-
tine or a function call, execution of that subroutine or 
function call will complete.

Step Out Steps execution out of the current subroutine or func-
tion call.

Step to Cursor Steps execution out to the current subroutine or func-
tion call.
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Color-Coded Display The color-coding of text in the Macro Window indicates what type of code you are 
viewing. 

By default the following colors are used in the script text:

➤ Blue colored text identifies reserved words in Visual Basic (for example, Sub End 
Sub, and Dim).

➤ Magenta colored text identifies SigmaPlot macro commands and functions.

➤ Green color is used to identify comments in your macro code. This is extremely 
helpful when you are trying to separate program documentation from the code 
as you read through your macros. 

Context-Sensitive
Help

Click a SigmaPlot Basic term and press F1 for context-sensitive Help for SigmaPlot 
macro commands. The online SigmaPlot command reference provides a detailed 
description and code example for each command. The SigmaPlot Object Browser 
contains Help specifically for SigmaPlot macro commands.

SigmaPlot Menus
Available in the
Macro Window

Rather than duplicate menu commands in the Macro Window, the SigmaPlot menu 
items that apply to macro coding are always available. Menu commands in the File, 
Edit, View, Tools, Window, and Help are available for use while you are working the 
Macro Window. For example, while you are in the Macro Window the choosing the 
File menu Save command will operate on the active macro instead of operating on a 
SigmaPlot notebook file.

Object and Procedure
Lists

The Object and Procedure lists show SigmaPlot objects and procedures for the 
current macro. These lists are useful when your macros become longer and more 
complex.

➤ The object identified as �(General)� groups all of the procedures that are not 
part of any specific object.

Toggle Breakpoint Toggles the breakpoint on the current line. The break-
point stops program execution.

Quick View Shows the value of the expression under the cursor in 
the Immediate Window.

Toggle Comments Hides and shows the comments in your macro code.

Macros Opens the Macros dialog box.

Dialog Box Editor Opens the Dialog Box Editor.

Object Browser Opens the Object Browser.

Reference Opens the Reference dialog box which contains a list of 
all programs that are extensions of the SigmaPlot Basic 
language.
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➤ The Procedure list shows all of the procedures for the currently selected object.

Setting Macro
Window Options

You can set appearance options for the Macro window in the Macros tab of the 
Options dialog box.

To set the options of the Macro Window:

1. With a macro window open, choose Options from the Tools menu. 

The Options dialog box appears.

2. In the Options dialog box, click the Macros tab. 

3. On the Macro tab you can do the following:

➤ Set text colors for different types of macro code and Debug Window output.

➤ Change font characteristics.

➤ Set the location for the macro library.

4. For details on setting these options, click the Help button, or press F1.

Viewing and Modifying a Recorded Macro 0

Reading SigmaPlot
Macro Code

When you record a macro, SigmaPlot generates a series of program statements that 
are equivalent to the actions that you perform. These statements are in a form of 
SigmaPlot language that has custom extensions specifically for SigmaPlot 

Figure 12�8
The Options dialog box

Macro Panel
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automation. You can edit these statements to modify the actions of the macro. You 
can also add comments to describe code.

Parts of the Macro
Programming

Language

The following topics list the parts of the macro programming language:

➤ Statements are instructions to SigmaPlot to perform an action(s). Statements can 
consist of keywords, operators, variables, and procedure calls.

Keywords are terms that have special meaning in SigmaPlot. For example, the 
Sub and End Sub keywords mark the beginning and end of a macro. By default, 
keywords appears as blue text on color monitors. To find out more about a spe-
cific keyword in a macro, select the keyword and press F1. When you do this, a 
topic in the SigmaPlot online reference appears and presents information about 
the term. 

➤ You can add optional comments to describe a macro command or function, and 
how it interacts in the script. When the macro is running, comment lines are 
ignored. You indicate a comment by beginning a line with an apostrophe. 
Comments always must end the line they�re on. The next program line must go 
on a new line. By default, comment lines appear as green text.

Scrolling and moving
the insertion point

When you use the scroll bars the insertion point does not change. To edit the macro 
code that you are viewing in the macro window, you must move the insertion point 
manually.

To edit macro code manually:

1. In the Macro window, click where you want to edit. 

2. You can also use arrows and key combinations to move the insertion point; 

Figure 12�9
The Macro Window
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when you do this the window scrolls automatically.

Editing macro code You can edit macro code in the same way you edit text in most word-processing and 
text editing programs. You add select and delete text, type over code, or insert text by 
moving the insertion point and then typing in new text. As with other programming 
languages, you can also add comments to code.

To edit macro code:

➤ Open the macro code window and select the text to edit. 

Adding Comments to
Code

Adding comments to code is an excellent way to identify the purpose of the various 
parts of a macro and to map locations as you edit a complex macro. Comments can 
be inserted that fully document how to use and how to understand the macro code.

Deleting
Unnecessary Code

The Macro Recorder creates code corresponding exactly to the actions that you make 
in SigmaPlot while the recorder was turned on. You may need to edit out unwanted 
steps.

Moving and Copying Code  You can cut, copy, and paste selected text.

Finding and Replacing Code  When you need to find and change text in a macro 
that you have written, use the Find commands. For example, if you change the name 
of a file that is referenced in your macro, you need to change every instance of the file 
name in your macro. Use Find to locate the instances of the filename in the macro 
and replace using cut and paste edit commands.

Adding Existing
Macros to a Macro

If you have another macro that already does what you want, you can just paste it into 
your new macro. Copy and paste the macro into your new macro, test it in the new 
code and run it.

What Macro
Recorder records

The Macro Recorder does not record the following types of activity:

➤ Cursor movement

If you want to include this type of activity in your macro, you can use the IDE 
features.

About user-defined functions 0

A user-defined function is a combination of math expressions and Basic code. The 
function always requires input data values and always returns a value. You supply the 
function with a value; it performs calculations on the values and returns a new value 
as the answer. Functions can work with text, dates, and codes, not just numbers.



Automating Routine Tasks

Using the Dialog Box Editor 255

A user-defined function is similar to a macro but there are differences. Some of the 
differences are listed in the following table.

For more information The online help has an extensive section on user-defined functions. From anywhere 
in the Macro window, press F1, or choose Help Topics from the Help menu.

Creating user-defined
functions

A user-defined function is like any of the built-in SigmaPlot function. Because you 
create the user-defined function, however, you have control over exactly what it does. 
A single user-defined function can replace database and spreadsheet data 
manipulation with a single program that you call from inside SigmaPlot. It is a lot 
easier to remember a single program than it is to remember several spreadsheet 
macros. 

For a full explanation of User Defined Functions, see the Automation online 
reference Help file.

Using the Dialog Box Editor 0

The Dialog Box Editor lets you design and customize your own dialog boxes. When 
you are designing and creating SigmaPlot macros, you can automatically create the 
necessary dialog box code and dialog monitor function code with the Dialog Box 
Editor. Like the other automated coding features in SigmaPlot, the code may require 
further customization.

To Create a Custom Dialog Box:

1. In the Macro Window, place the insertion point where you want to put the code 
for the dialog box.

2. From the Macro Window toolbar click the Dialog Box Editor button. A blank 
dialog grid appears.

Recorded macros User-defined functions

Performs a SigmaPlot action, 
such as creating a new chart. 
Macros change the state of the 
program.

Returns a value; cannot perform 
actions. Functions return answers 
based on input values.

Can be recorded. Must be created in Macro code.

Are enclosed in the Sub and 
End Sub keywords.

Are enclosed in the keywords Func-
tion and End Function.
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3. Now you can select a tool, such as a button or check boxes, from the Toolbox. 
The cursor changes to a cross when you move it over the grid.

4. To place a tool on the dialog box, click a position on the grid. A default tool will 
be added to the dialog grid.

5. Resize the dialog box by dragging the handles on the sides and the corners.

6. Right-click any of the controls that you have placed on the dialog surface (after 
selecting the control) and enter a name for the control.

7. Right-click the dialog form (with no control selected) and enter a name for the 
dialog monitor function in the DialogFunc field.

8. To finish, click OK. The code for the dialog box with controls will be written to 
the Macro Window.

9. Finally, and in most cases, you must edit the code for dialog box monitor func-
tion to define the specific behavior of the elements in your dialog box.

For more information, see the Automation online help reference.

Using the Object Browser 0

The Object Browser displays all SigmaPlot object classes. The methods and 
properties associated with each SigmaPlot macro object class are listed. A short 
description of each object appears in the dialog box as you select them from the list. 
By clicking F1, you can access extensive Help that includes example code for the 
individual properties and methods. The Paste feature lets you insert generic code 
based on your selection into a macro. 

The Object Browser will be familiar and useful if you are comfortable with object 
oriented programming. If you are not, consult one of the excellent introductory texts 
on Visual Basic.

For full details on using the Object Browser, press F1 from anywhere in the Macro 
window.

Using the Add Procedure Dialog Box 0

Organizing your code in procedures makes it easier to manage and reuse. SigmaPlot 
macros, like Visual Basic programs, must have at least one procedure (the main 
subroutine) and often they have several. The main procedure may contain only a few 
statements, aside from calling subroutines that do the work. 
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SigmaPlot provides a dialog box that generates procedure code for your macros. 

Using the Add
Procedure Dialog Box

By using the Add Procedure dialog box, you can define a sub, function, or property 
using the Name, Type, and Scope boxes. Clicking OK pastes the code for a new 
procedure into your macro at the insertion point.

For full details on using the Add Procedure, press F1 from anywhere in the Macro 
window.

Using the Debug Window 0

The Debug Window contains a group of features that are helpful when you are 
trying to locate and resolve errors in your macro code. The debugging tools in 
SigmaPlot will be familiar if you have used one of the modern visual programming 
languages or Microsoft Visual Basic for Applications. Essentially, the Debug Window 
gives you incremental control over the execution of your program so that you can 
sleuth errors in your programs. The Debug Window also gives you a precise way to 
determine the contents of your variables. Again, a series of buttons is used to select 
the operation mode of the Debug Window. 

Debug Toolbar
Buttons

The debugging features of the Debug Window are controlled by buttons on the 
Macro Window toolbar. To review:

➤  The four Step buttons provide methods for controlling the execution of 
commands. They offer various ways of responding to subroutines and functions.

➤ The Breakpoint button lets you set a point and execute the program until it 
reaches that point.

➤ The Quick View button displays the value of the expression in the immediate 
window.

The inclusion of these features for controlling program execution are a standard but 
powerful combination of tools for writing and editing macros.

Debug Window Tabs The output from the Debug Window is organized in four tabs that allow you to type 
in statements, observe program execution responses, and iteratively modify your code 
using this feedback. If you have never used a debugging tool and are new to 
programming, it would be a good idea to supplement the following description with 
further study.

Immediate Tab The Immediate Tab lets you evaluate an expression, assign a specific value to a 
variable or call a subroutine and evaluate the results. Trace mode prints the code in 
the tab when the macro is running.

➤ Type "?expr" and press Enter to show the value of "expr".
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➤ Type "var = expr" and press Enter to change the value of  "var".

➤ Type "set var = expr" and press Enter to change the reference of "var".

➤ Type "subname args" and press Enter to call a subroutine or built-in expression 
�subname� with arguments �args�.

➤ Type "trace" and press Enter to toggle trace mode. Trace mode prints each 
statement in the Immediate Tab when a macro is running.

Watch Tab The Watch Tab lists variables, functions, and expressions that are calculated during 
execution of the program.

➤ Each time program execution pauses, the value of each line in the window is 
updated.

➤ The expression to the left of the "->" may be edited.

➤ Pressing Enter updates all the values immediately.

➤ Pressing Ctrl+Y deletes the line.

Stack Tab The output from the Stack Tab lists the program lines that called the current 
statement. This is a macro command audit and is helpful to determine the order of 
statements in you program.

➤ The first line is the current statement. The second line is the one that called the 
first, and so on.

➤ Clicking a line brings that macro into a sheet and highlights the line in the edit 
window.
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Regression Equation Library

This appendix lists the equations found in the Regression Equation Library.

  Polynomial Linear

Quadratic

Cubic

Inverse First Order

Inverse Second Order
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Inverse Third Order

 Peak  Three Parameter Gaussian

 Four Parameter Gaussian

 Three Parameter Modified Gaussian

 Four Parameter Modified Gaussian

 Three Parameter Lorentzian

 Four Parameter Lorentzian
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 Four Parameter Pseudo-Voigt

 Five Parameter Pseudo-Voigt 

 Three Parameter Log Normal

 Four Parameter Log Normal

 Four Parameter Weibull

 Five Parameter Weibull
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 Sigmoidal  Three Parameter Sigmoid

 Four Parameter Sigmoid

 Five Parameter Sigmoid

 Three Parameter Logistic

 Four Parameter Logistic

 Four Parameter Weibull

 Five Parameter Weibull
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 Three Parameter Gompertz Growth Model

 Four Parameter Gompertz Growth Model

 Three Parameter Hill Function

 Four Parameter Hill Function

 Three Parameter Chapman Model

 Four Parameter Chapman Model

 Exponential Decay  Two Parameter Single Exponential Decay
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 Three Parameter Single Exponential Decay

 Four Parameter Double Exponential Decay

 Five Parameter Double Exponential Decay

 Six Parameter Triple Exponential Decay

 Seven Parameter Triple Exponential Decay

 Modified Three Parameter Single Exponential Decay

 Exponential Linear Combination
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 Exponential Rise to
Maximum

 Two Parameter Single Exponential Rise to Maximum

 Three Parameter Single Exponential Rise to Maximum

 Four Parameter Double Exponential Rise to Maximum

 Five Parameter Double Exponential Rise to Maximum

 Two Parameter Simple Exponent Rise to Maximum

 Three Parameter Simple Exponent Rise to Maximum

 Exponential Growth  One Parameter Single Exponential Growth
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 Two Parameter Single Exponential Growth

 Three Parameter Single Exponential Growth

 Four Parameter Double Exponential Growth

 Five Parameter Double Exponential Growth

 Modified One Parameter Single Exponential Growth

 Modified Two Parameter Single Exponential Growth 

 Stirling Model
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 Two Parameter Simple Exponent

 Three Parameter Simple Exponent

 Modified Two Parameter Simple Exponent

 Hyperbola  Two Parameter Rectangular Hyperbola

 Three Parameter Rectangular Hyperbola I

 Three Parameter Rectangular Hyperbola II

 Four Parameter Double Rectangular Hyperbola
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 Five Parameter Double Rectangular Hyperbola

 Two Parameter Hyperbolic Decay

 Three Parameter Hyperbolic Decay

 Modified Hyperbola I

 Modified Hyperbola II

 Modified Hyperbola III

 Waveform  Three Parameter Sine

y ax
b x+
----------- cx

d x+
----------- ex+ +=

y
ab

b x+
-----------=

y y0
ab

b x+
-----------+=

y
ax

1 bx+
---------------=

y
x

a bx+
--------------=

y a
b

1 cx+( )
1
d
---

----------------------–=

y a
2πx

b
--------- c+ 

 sin=



Regression Equation Library

269

 Four Parameter Sine

 Three Parameter Sine Squared

 Four Parameter Sine Squared

 Four Parameter Damped Sine

 Five Parameter Damped Sine

 Modified Sine

 Modified Sine Squared 
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 Modified Damped Sine

 Power  Two Parameter

 Three Parameter

 Pareto Function

 Three Parameter Symmetric

 Four Parameter Symmetric

 Modified Two Parameter I
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 Modified Two Parameter II

 Modified Pareto

 Rational One Parameter Rational I

One Parameter Rational II

Two Parameter Rational I 

Two Parameter Rational  II

Three Parameter Rational I
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Three Parameter Rational II

Three Parameter Rational III

Three Parameter Rational IV

Four Parameter Rational

Five Parameter Rational

Six Parameter Rational

Seven Parameter Rational
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Eight Parameter Rational

Nine Parameter Rational

Ten Parameter Rational

Eleven Parameter Rational

 Logarithm  Two Parameter I

 Two Parameter II

 Two Parameter III
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 Second Order

 Third Order

 3 Dimensional  Plane

 Paraboloid

 Gaussian

 Lorentzian   
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Symbols

.FIT files 145

.XFM files 1, 4
A
ABS function 28
Absolute minimum

sum of squares 223, 224
Accumulation functions 24
Add Procedure Dialog Box 256
Adjusted R2

regression results 170
Algorithm

Marquardt-Levenberg 146, 162, 201
Alpha value

power 174
ANOVA

one way ANOVA transform 71�73
ANOVA table

regression results 171
APE function 28
ARCCOS function 29
ARCSIN function 29
ARCTAN function 30
Area and distance

functions 25
Area beneath a curve

transform 73�74
AREA function 31
Arguments, transform 21

see also function arguments
Arithmetic operators

transforms 18�19
Array reference

example of use 112
Automation 241�258

introduction 2
AVG function 31
Axis scale

user-defined 132�135

user-defined transform 132�135
B
Bar chart histogram with Gaussian distribution 112�
114
Bivariate statistics transform 74�75
BLOCK function 32

Fast Fourier transform 94
BLOCKHEIGHT function 32
BLOCKWIDTH function 32
C
Cancelling a regession 164
CELL function 33
CHOOSE function 34
Coefficient of determination

stepwise regression results 165, 170
Coefficient of determination (R 2) transform 82�83
Coefficient of variation

parameters 165, 208, 215�218
Coefficients

regression results 170
COL function 21, 34
Color

smooth color transition transform 128�130
Comments

entering regression 188
Completion status messages

regression results 182�183
COMPLEX function 35
Components

see transform components 6�9
Computing

derivatives 87�93
Confidence interval

linear regressions 114�117
regression results 176

Constant variance test
regression results 173

Constraints, parameter
badly formed 183
defining 160

Index
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entering 158�160, 199�200, 208�209
viewing 166

Constructor notation
example of use 71
regression example 196
square bracket 8

Convergence 147
Cook�s Distance test

results 175
Correlation coefficient

regression results 165, 170
COS function 35
COSH function 36
COUNT function 36, 71
Creating

macros 242
Curly brackets 5
Curve fitter

functions 25
introduction 146

Curve fitting pitfalls 219�240
Curves

coefficient of determination 82�83
curves of constant damping and natural 

frequency 138�141
Kaplan-Meier survival curve transform 130�132
transform for integrating under a curve 73�74
transform for shading pattern under line plot 

curves 123�125
z-plane design curve transform 138�141

D
Data format options

Regression Wizard 156
DATA function 11, 37, 84
Data manipulation functions 22
Debug Window 257
Defining

variables 11
Degrees of freedom

regression results 171
Dependencies

exponential equation 229
parameter 165, 208, 215, 229�231

Dependent variables
entering 190�198

see also variables
Derivatives

computation 87�93
Descriptions

of transform functions 22�66
DFFITS test

regression results 176
Diagnostics

influence 175
regression results 174

Dialog Box Editor 255
DIFF function 38, 73
Differential equation

solving 76�80
DIST function 38
Distance

functions 25
DSNIP function 38
Durbin-Watson test

regression results 173
E
Editing

equations 155
macro code 254
macros 243

Editing Code 185�203
Entering

constraints, parameter 158�160, 199�200, 208�
209

equations, regression 188�190
iterations 161�162, 200�201
options 200�202
parameters 198�199
regression comments 188
regression equation settings 188�192
regression statements 188�190, 205�209
step size 162, 201
tolerance 162, 201
transforms 3�4, 11�13
variables 190�198

Equation solving 232�233
Equations

editing 155
overparameterized 237
saving 192
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Equations, regression
entering 188�190
entering settings 188�192
examples 259�274
executing 215
fit statements 220
iterations 161�162, 200�201
logistic 232
parameters 198�199
regression statements 183, 188�190
results 164�167, 215
results messages 182�184
running again 166
saving results 166�167
solving 232�233
step size 162, 201
tolerance 162, 201
variables 190�198
weight variables 194

Equations, transform
creating 3
entering 3�4
syntax and structure 4�5
variables 19�20

Error function
Gaussian cumulative distribution 109�111

Error status messages
regression results 183�184

Examples
regression 219�240
regression equations 259�274
transforms 71�141
see also transform examples and regression 

examples
Executing

transforms 13
Exiting

regression dialog 166
EXP function 39
Exponential equations

dependency example 229
F
F statistic

regression results 172
FACTORIAL function 39

Fast Fourier functions 27
Fast Fourier transform 93�106

BLOCK function 94
gain filter smoothing 103
Hanning window 95
kernel smoothing 97
low pass smoothing filter 100
power spectral density 95

FFT function 40
Files

.XFM 1
transform 4

Filtering
Fast Fourier transforms 93�106
gain filter transform 103
low pass 100

Filters
smoothing 117�119

Fit f to y with weight w 194
Fit statements

modifying 220
Fit with weight 160
FOR function 40
Fractional defective control chart transform 84�87
Frequency plot 106�109
Functions

ABS 28
accumulation 24
APE 28
ARCCOS 29
ARCSIN 29
ARCTAN 30
AREA 31
area and distance 25
AVG 31
BLOCK 32, 94
BLOCKHEIGHT 32
BLOCKWIDTH 32
CELL 33
CHOOSE 34
COL 21, 34
COMPLEX 35
COS 35
COSH 36
COUNT 36, 71
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curve fitting 25
DATA 37, 84
data manipulation 22
defining 12
descriptions 22
DIFF 38, 73
DIST 38
distance 25
DSINP 38
error 109�111
EXP 39
FACTORIAL 39
Fast Fourier 27
FFT 40
FOR 40
FWHM 41
GAUSSIAN 42, 109�111, 112
HISTOGRAM 42, 112, 121
IF 20, 43, 71
IF, THEN, ELSE 44
IMAGINARY (IMG) 45
INT 45
INTERPOLATE 46
INV 46
INVCPX 47
INVFFT 47
LN 48
LOG 48
logistic 232, 233
LOOKUP 49, 84
LOWESS 51
LOWPASS 51
MAX 52, 114
MEAN 52, 71, 74
MIN 53, 114
miscellaneous 27
MISSING 53
MOD 54
MULCPX 54
NTH 54
numeric 23
PARTDIST 55
Poisson distribution 40
POLYNOMIAL 55
PREC 56

precision 24
PUT INTO 56
RANDOM 57
random number 24
range 23
REAL 58
regression 234�237
RGBCOLOR 58
ROUND 59
RUNAVG 59
SIN 60
SINH 61
SINP 61
SIZE 61, 112
SORT 62
special constructs 27
SQRT 63
statistical 25
STDDEV 63, 74
STDERR 64
SUBBLOCK 64
SUM 65
TAN 65
TANH 66
TOTAL 66, 71, 74
trigonometric 23
user-defined 6, 69�70
worksheet 22
X25 66
X50 67
X75 68
XATYMAX 68
XWTR 69
see also transforms and transform functions

FWHM function 41
G
GAUSSIAN function 42, 109�111, 112
Gaussian transform

cumulative distribution histogram 112�114
GAUSSIAN function 109�111, 112

Gaussian transforms
GAUSSIAN function 42

Graphs
transform results 13
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H
Hanning window 95
HISTOGRAM function 42, 112, 121
Histogram transforms

HISTOGRAM function 42, 112, 121
histogram with Gaussian distribution 112�114
normalized histogram transform 121�123

Homoscedasticity
see also constant variance test 173

I
IF function 43, 71

logical operators 20
IF, THEN, ELSE function 44
IMAGINARY function 45
IMG function 45
Independent variables

entering 190�198
see also variables

Influence diagnostics
regression results 175

Influential point tests 175
INT function 45
Integrating under curve transform 73�74

see also trapezoidal rule transform
INTERPOLATE function 46
Interpreting results

regression 164�167, 215
Introduction

Automation 2
transforms and regression 1�2

INV function 46
INVCPX function 47
INVFFT function 47
Iterations 147

entering 161�162, 200�201
exceed maximum numbers 182
more iterations 182

K
Kaplan-Meier survival curve transform 130�132
Kernel smoothing

Fast Fourier transform 97
L
Least squares

regression 225

Leverage test
regression results 175

Line plot curve
shading pattern transform 123�125

Linear regression
comparing with linear regression results 211
comparing with nonlinear regression results 211

Linear regression dialog 205�212
parameter values transform 83�84
standard deviation 83�84
with confidence and prediction intervals 

transform 114�117
LN function 48
Local maximum

sum of squares 223
Local minimum

finding 223
LOG function 48
Logical operators

transforms 20
Logistic function

4 parameter 213�218
5 parameter 218
four parameter 232, 233

LOOKUP function 49, 84
Lorentzian distribution

regression example 219�224
Low pass filter 117�119
Low pass smoothing filter 100
LOWESS function 51
LOWPASS function 51
M
Macro Recorder 242�248

introduction 2
tips 248
using 243

Macro Window 248�252
color-coded display 251
Object and Procedure lists 251
setting options 252
using context-sensitive Help 251
using SigmaPlot menus 251
using the toolbar 250

Macros
Add Procedure Dialog Box 256
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adding comments to code 254
adding to the Tools menu 247
changing options 246
creating 242
Debug Window 257
Dialog Box Editor 255
editing 243
editing code 254
Macro Window 248
managing 246�247
modifying 252�254
Object Browser 256
programming language 253
reading SigmaPlot macro code 252
recording 243�245
renaming 247
running 245�246
setting options 246
storing 246
user-defined functions 254
using the toolbar 250
viewing 252�254

Marquardt-Levenberg algorithm 146, 162, 201
Math menu

transform 3
MAX function 52, 114
MEAN function 52, 71, 74
Mean squares

regression results 171
Menus

Macro Window 251
Messages

completion status 182�183
error status 183�184
regression results 182�184
regression status 165

MIN function 53, 114
MISSING function 53
Missing values

in transforms 7
MOD function 54
Modifying

recorded macros 252�254
MULCPX function 54
Multiple independent variables 156

N
Nonlinear regression

see regression
Norm

effect of weighting 197
in iterations dialog 215

Normality test
regression 173

Normalized histogram
see histogram transforms

NTH function 54
Numbers

functions 23
precision functions 24
random generation functions 24

Numeric functions 23
O
Object Browser 256
OLE Automation

introduction 2
One way analysis of variance (ANOVA) transform 
71�73
Operators

see transform operators
Options button

Regression Wizard 154
Options, regression

entering 200�202
iterations 161�162, 200�201
regression equations 188�192
step size 162, 201
tolerance 162, 201, 222

P
P value

regression results 171, 172
Parameters

coefficient of variation 165, 208, 215�218
constraints 158�160, 199�200, 208�209
convergence message 182
default settings in Regression Wizard 158
defined but not referenced 184
dependencies 165, 208, 215, 229�231
entering 198�199
identifiability 237



Index

281

initial values 198
initial values, determining 202
invalid 182�183
logistic functions 213�218
missing 183
regression results 165, 207, 215�218
standard error 165, 207, 215�218
viewing constraints 166
see also function arguments

PARTDIST function 55
Piecewise continuous model

regression example 227�228
Plotting

frequencies 106�109
regression results 209�211
transform results 13

Poisson distribution 225
Polynomial

approximation for error function 109
POLYNOMIAL function 55
Population

confidence interval results 176
Power

alpha value 174
regression results 174

Power spectral density
Fast Fourier transform 95

PREC function 56
Precision functions 24
Predicted values

regression diagnostic results 174
regression results 176

Prediction intervals
linear regressions 114�117

PRESS statistic
regression results 172

Probability scale 110
PUT INTO function 56
Q
Quitting

regression dialog 166
R
R (correlation coefficient) 165
R (correlation coefficient) regression 170
R2 (coefficient of determination)

regression 165, 170
RANDOM function 57
Random generation functions 24
Random number generation

exponentially distributed 123
Ranges

functions 23
operators 18�20

REAL function 58
Recording

macros 243�245
References for Marquardt-Levenberg Algorithm 147
Regression

absolute minimum 222
advanced techniques 237�240
comparing results with linear regression 211
completion status messages 165
constraints, parameter 158�160, 199�200
entering equation settings 188�192
Equation Library 150
error status messages 183�184
examples 205, 219�240
executing 205�208, 215
fit statements 220
generating a regression equation 188�190
influencing operation 200�202
introduction 1�2
iterations 147, 161�162, 200�201
linear regression 205�212
local maximum 222
local minimum 222�223
logistic function regression 213�218
Marquardt-Levenberg algorithm 146
multiple function 234�237
options 200�202
overview 1�2
parameters 198�199, 229�231
plotting results 209�211
quitting 166
report 169�176
results 164�167, 205�208, 211, 215
results messages 182�184
running a regression again 166
saving results 166�167, 209�211
scaling x variable 238
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solving equations 232�233
step size 162, 201
straight line 205�212
tips 219�240
tolerance 162, 201, 222
transform functions 196
tutorial 205�218
variables 190�198, 225
weight variables 194, 197�198, 225
weighted regression 224�227
see also linear regression and regression examples

Regression Equation library 150, 259
3 Dimensional 274

Gaussian 274
Lorentzian 274
Paraboloid 274
Plane 274

Exponential Decay 263
1 Parameter Single 265
2 Parameter Simple Exponent 265, 267
2 Parameter Single 265, 266
2 Parameter Single Exponential Decay 263
3 Parameter Simple Exponent 265, 267
3 Parameter Single 265, 266
3 Parameter Single Exponential Decay 264
4 Parameter Double 265, 266
4 Parameter Double Exponential Decay 264
5 Parameter Double 265, 266
5 Parameter Double Exponential Decay 264
6 Parameter Triple Exponential Decay 264
7 Parameter Triple Exponential Decay 264
Exponential Linear Combination 264
Modified 1 Parameter Single 266
Modified 2 Parameter Simple Exponent 267
Modified 2 Parameter Single 266
Modified 3 Parameter Single Exponential 

Decay 264
Stirling Model 266

Exponential Growth 265
Exponential Rise to Maximum 265
Hyperbola 267

2 Parameter Hyperbolic Decay 268
2 Parameter Rectangular Hyperbola 267
3 Parameter Hyperbola II 267
3 Parameter Hyperbolic Decay 268

3 Parameter Rectangular Hyperbola I 267
4 Parameter Double Rectangular Hyperbola 

267
5 Parameter Double Rectangular Hyperbola 

268
Modified Hyperbola I 268
Modified Hyperbola II 268
Modified Hyperbola III 268

Logarithm 273
2 Parameter I 273
2 Parameter II 273
2 Parameter III 273
2nd Order 274
3rd Order 274

Peak 260
3 Parameter Gaussian 260
3 Parameter Log Normal 261
3 Parameter Lorentzian 260
3 Parameter Modified Gaussian 260
4 Parameter Gaussian 260
4 Parameter Log Normal 261
4 Parameter Lorentzian 260
4 Parameter Modified Gaussian 260
4 Parameter Pseudo-Voigt 261
4 Parameter Weibul 261
5 Parameter Pseudo-Voigt 261
5 Parameter Weibul 261

Polynomials 259
Cubic 259
Inverse 2nd Order 259
Inverse 3rd Order 260
Inverse First Order 259
Linear 259
Quadratic 259

Power 270
2 Parameter 270
3 Parameter 270
3 Parameter Symmetric 270
4 Parameter Symmetric 270
Modified 2 Parameter I 270
Modified 2 Parameter II 271
Modified Pareto 271
Pareto Function 270

Rational 271
1 Parameter Rational I 271
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1 Parameter Rational II 271
10 Parameter Rational 273
11 Parameter Rational 273
2 Parameter Rational I 271
2 Parameter Rational II 271
3 Parameter Rational I 271
3 Parameter Rational II 272
3 Parameter Rational III 272
3 Parameter Rational IV 272
4 Parameter Rational 272
5 Parameter Rational 272
6 Parameter Rational 272
7 Parameter Rational 272
8 Parameter Rational 273
9 Parameter Rational 273

Sigmoidal 262
3 Parameter Chapman Model 263
3 Parameter Gompertz Growth Model 263
3 Parameter Hill Function 263
3 Parameter Logistic 262
3 Parameter Sigmoid 262
4 Parameter Chapman Model 263
4 Parameter Gompertz Growth Model 263
4 Parameter Hill Function 263
4 Parameter Logistic 262
4 Parameter Sigmoidal 262
4 Parameter Weibul 262
5 Parameter Sigmoidal 262
5 Parameter Weibul 262

Waveform 268
3 Parameter Sine 268
3 Parameter Sine Squared 269
4 Parameter Damped Sine 269
4 Parameter Sine 269
4 Parameter Sine Squared 269
5 Parameter Damped Sine 269
Modified Damped Sine 270
Modified Sine 269
Modified Sine Squared 269

Regression examples
advanced techniques 237�240
constructor notation 196
dependencies 229�231
Lorentzian distribution 219�224
multiple function 234�237

piecewise continuous model 227�228
solving equations 232�233
weighted regression 224�227

Regression functions
multiple function regression 234�237

Regression results
ANOVA table 171
coefficients 170
confidence interval 176
confidence interval for the regression 176
constant variance test 173
constants 170
Cook�s Distance test 175
DFFITS 176
diagnostics 174
Durbin-Watson statistic 173
F statistic 172
influence diagnostics 175
leverage 175
normality test 173
P value 171, 172
power 174
predicted values 176
PRESS statistic 172
standard error 171
standard error of the estimate 170
statistics 170
sum of squares 171
t statistic 171

Regression statements
bad or missing 183
containing unknown function 184
editing 222
entering 205�209
unknown variable 184

Regression Wizard 144�145, 149
cancelling a regression 164
constraints 158�160
creating new equations 154
default results 153
equation options 157
finish button 153
fit with weight 160
interpreting initial results 164
introduction 143�147
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iterations 161
multiple independent variables 156
opening .FIT files 145
parameters 158
running regression from a notebook 153
saving equation changes 163
selecting data 149
selecting equations 149
selecting variables 150
setting graph options 152
setting results options 151
step size 162
tolerance 162
using 149�176
variable options 156
viewing and editing code 154
viewing initial results 151
watching the progress 164

Relational operators
transforms 19�20

Reports
regression 169�176

Residual tests
Durbin-Watson statistic 173
PRESS statistic 172

Residuals
effect of weighting 197
regression diagnostic results 174
standardized 174
studentized 174
studentized deleted 175

Results
completion status messages 182�183
error status messages 183�184
regression 164�167, 205�208, 215
regression messages 165, 182�184
saving regression 166�167
viewing constraints 166

RGBCOLOR function 58
ROUND function 59
RUNAVG function 59
S
Sample transforms 71�141
Satisfying

tolerance 182�183

Saving
regression equation changes 163
regression results 166�167, 209�211
transforms 4, 13
user-defined transforms 70

Scalars
operators 18�20

Scale
probability 110

Scale, axis
user-defined axis 132�135

Settings
regression equations 188

Shading
between curves 125

Shading pattern transform
for line plot curve 123�128

SigmaPlot Basic
introduction 2

SIN function 60
SINH function 61
SINP function 61
SIZE function 61, 112
Smooth color transition transform 128�130
Smoothing

Fast Fourier transforms 93�106
gain filter 103
kernel 97
low pass filter 100, 117�119

Solving
differential equations 76�80

SORT function 62
Special construct functions 27
SQRT function 63
Square brackets

in transforms 9
Standard deviation of linear regression coefficients 
transform 83�84
Standard error

parameter 165, 207, 215�218
regression results 171

Standard error of the estimate
regression results 170

Standardized residuals
regression diagnostic results 174
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Statements
IF function 20

Statistical functions 25
Statistical summary table

results 170
Statistics

bivariate 74�75
Durbin-Watson 173
F statistic 172
PRESS 172
t statistic 171

STDDEV function 63, 74
STDERR function 64
Step graph transform 84�87
Step size 162

default value 162
entering 162, 201

Stepwise regression results
adjusted R2 170

Storing
macros 246

Strings 12
in transforms 7

Studentized deleted residuals
regression results 175

Studentized residuals
regression diagnostic results 174

SUBBLOCK function 64
SUM function 65
Sum of squares

absolute minimum 223
local maximum 223
regression results 171

Survival Curve transform
see Kaplan-Meier survival curve transform

T
t statistic regression results 171
TAN function 65
TANH function 66
Tolerance 162

default setting 163
entering 162, 201
reducing 222
satisfying 182�183

Toolbars

Macro Recorder 250
TOTAL function 66, 71, 74
Transform components 6�9

scalars & ranges 18�20
user-defined functions 6
variables 19�20

Transform components, scalars and ranges
see also transform operators 18

Transform components, variables
see also transform operators, relational operators 

19
Transform examples 11�14, 71�141

analysis of variance table 71�73
anova table 71�73
bivariate statistics 74�75
coefficient of determination for nonlinear 

regressions 82�83
control chart 84�87
cubic spline 87�93
cubic spline interpolation 87�93
differential equation solving 76�80
F -test

to determine statistical improvement in 
regression 80�82

Fast Fourier transforms 93�106
fractional defective control chart 84�87
Frequency plot 106�109
Gaussian cumulative distribution 109�111
histogram with Gaussian distribution 112�114
Kaplan-Meier survival curves 130�132
linear regression parameters 83�84
linear regression standard deviations 83�84
linear regressions 114�117
low pass filter 117�119
normalized histogram 121�123
polynomial approximation for error functions 

109
shading pattern for line plot curves 123�128
smooth color transition 128�130
trapezoidal rule beneath a curve 73�74
user-defined axis scale 132�135
vector plot 135�136
z-plane design curves 138�141
see also transforms

Transform functions 21�70
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arguments 21
DATA 11
defining 12
defining variables 196
descriptions 22�66
multiple regression 234�237
user-defined 6, 69�70, 132�135
see also transforms and functions

Transform operators 17�20
arithmetic 18�19
defining variables 196
logical 20
order of operation 17
ranges & scalars 18�20
relational 19�20

Transforms
ANOVA.XFM 72
AREA.XFM 73�74
arguments 21
BIVARIAT.XFM 75
CBESPLN1.XFM 87, 89�91
CBESPLN2.XFM 87, 91�93
components 6�9
CONTROL.XFM 85�87
creating 3
curly brackets 5
dialog 3�4
DIFFEQN.XFM 76, 77�80
entering 3�4, 11�13
examples 11�14, 71�141
executing 13
files 4
FREQPLOT.XFM 106�109
F-TEST.XFM 80, 81�82
function descriptions 22�66
GAINFILT.XFM 103�106
GAUSDIST.XFM 110�111
HISTGAUS.XFM 112�114
introduction 1�2
LINREGR.XFM 114�117
LOWPASS.XFM 100�103
LOWPFILT.XFM 117
maximum size 3
missing values 7
NORMHIST.XFM 121, 122

operators 17�20
order of precedence 17
overview 1
parentheses 6
plotting results 13
POWSPEC.XFM 94, 96�97
R2.XFM 82�83
ranges & scalars 18�20
RGBCOLOR.XFM 128�130
saving 4, 13
SHADE_1.XFM 123�125
SHADE_2.XFM 123, 126�128
SMOOTH.XFM 97�100
square brackets 9
STDV_REG.XFM 83�84
strings 7
SURVIVAL.XFM 130�132
syntax and structure 4�5
tutorial 11�14
user-defined 14�16, 109�111, 132�135
user-defined functions 6
using 3�9
variables 19�20
VECTOR.XFM 135�138
ZPLANE.XFM 138�141
see also transform functions and examples 21

Transforms menu
user-defined 14�16

Trapezoidal rule transform 73�74
Trigonometric functions 23
Tutorial

user-defined transforms 14�16
Tutorials

regression 205�218
transform 11�14

U
User-defined

differential equations 76�80
F -test 80�82

User-defined functions 6, 69�70
axis scale 132�135
error functions 109�111
saving 70

User-defined transforms
for loops 40
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function descriptions 22
tutorial 14�16
vector plots 135�136

V
Values

missing 7
Variables

defining 11, 195�198
dependent 190�198
entering 190�198
independent 190�198
relational operators 19�20
scaling large values 238
unknown 184
weight variable 194, 197�198, 225

Vector
plot 135�136

Viewing
constraints, parameter 166
recorded macros 252�254

W
Weight variables

defining 197
entering 190�198
non-uniform errors 239
norm and residual changes 197
regression 225
when to use 194, 197

Weighted regression
regression examples 224�227
weight variables 197

Worksheet functions
overview 22

X
X25 function 66
X50 function 67
X75 function 68
XATYMAX function 68
XFM files 4
XWTR function 69
Z
z-plane design curves transform 138�141


