

Investigating Riparian Groundwater Dynamics by Means of Diurnal Oscillations of Natural Tracers at a Losing Swiss Peri-Alpine River

Tobias Vogt, Michael Döring, Masaki Hayashi, Mario Schirmer, Olaf A. Cirpka

Eawag: Swiss Federal Institute of Aquatic Research and Technology

Groundwater Resources of Switzerland

Source: BUWAL 2004

Biggest groundwater resources of Switzerland are located in gravel aquifers of flood plains

River Restoration Projects in Switzerland

Source: http://www.wsl.ch/land/products/rhone-thur/aufweitungen

Most river restoration projects are located in alluvial flood plains

The Thur-Valley

Assessment and Modeling of Coupled Ecological and Hydrological Dynamics in the Restored Corridor of a River

Restored Corridor Dynamics

Study Site

The Thur valley

Tracer Tests for Determination of Travel Times between Losing Rivers and Wells

Results are valid only for the specific hydrologic conditions during the test. For large rivers a big tracer mass is necessary.

Fiber-Optic High-Resolution Vertical Temperature Profiler

Wrapping around a 2" piezometer-tube (PVC):

1 m cable length results in 0.005 m depth intervals

 \rightarrow high vertical resolution

Temperature Distribution along the Fiber-Optic High-Resolution Vertical Temperature Profiler

Analysis of temperature time series by means of Dynamic Harmonic Regression (Young et al. 1999).

Apparent seepage variability over depth and time

Vogt et al. 2010 J.Hydrol.

Diurnal Oscillations in Young Groundwater

Vogt et al. (2010), Adv.Wat.Res.

Advective Travel Time of Diurnal EC Oscillations

Dynamic Harmonic Regression (Young 1999) is used to extract amplitudes and phase angles of sine-cosine functions with the frequency 1/day.

Vogt et al. (2010), Adv.Wat.Res.

Photosynthesis Controls Diurnal EC and CaCO3 Oscillations

O₂-Profiles of Riparian Observation Wells

Fresh river water infiltrate on top, older groundwater below.

Travel Times vs. Biogeochemistry

Concluding remarks

- Diurnal oscillations of natural tracers offer useful signals to quantify river – groundwater interaction at losing river sections.
- EC fluctuations give a more comprehensive indication of bank filtration than temperature and water-table fluctuations.
- Temporal variability can be quantified.
 - \Rightarrow Shortest travel times during times of higher river stage.
- Photosynthesis induces diurnal variations of water chemistry (even in a big river like river Thur)
- Vertical and temporal variability of oxygen conc. in riparian groundwater.
- Methods can be used to evaluated effects of river restoration on groundwater. A particular benefit originates from such studies, if data before and after the restoration exist.

Acknowledgements

Assessment and Modeling of Coupled Ecological and Hydrological Dynamics in the Restored Corridor of a River

Restored Corridor Dynamics

eawag aquatic research **b**000

Propagation of Natural Tracers in the Aquifer

Oxygen Time Series

Time Series of River Thur

Dampening of Electrical Conductivity Signal

Nonparametric Deconvolution

Vogt et al. (2010), Adv.Wat.Res.

Travel Times "Channelized River Corridor"

Meters

Travel Times "Restored River Corridor"

Diurnal EC Oscillations

Diurnal EC Oscillations

vogt et al. (2010), Adv.Wat.Res.

Time Series of River Thur

Vogt et al. (submitted), Adv.Wat.Res.

Amplitude of Diurnal EC Oscillations

Vogt et al. (submitted), Adv.Wat.Res.

Diurnal Variation of Hydrochemical Parameters

River GW

X = hardness O = HCO3-

Vogt et al. (submitted), Adv.Wat.Res.

Travel Times vs. Biogeochemistry

Date

Temperature Distribution in the Bank

Time Shift of Diurnal River Temperature Signal

Modeling of Heat Transport upon River-Water Infiltration

Modeling of Heat Transport upon River-Water Infiltration

