

When hydrology meets chemistry -Insights into the coupling between transport and reaction

Stefan Peiffer, Katrin Hellige, Wolfgang Kurtz Dept. of Hydrology, BayCEER, Univ. Bayreuth

turnover?

Outline

- 1. The geochemical frame work: Pyrite formation
- 2. Transport control of geochemical reactions
- 3. The Damköhler number a usefool tool?

1) The geochemical frame work: Pyrite formation

1) The geochemical frame work: Pyrite formation

2 FeOOH + 3 $H_2S \rightarrow$ 2 FeS + S° + 4 H_2O FeS + S° \rightarrow FeS₂

"Long time" Batch Experiments

- 5 mmol S(-II) + 25 mmol/L Lepidocrocite
- Glove Box
- pH 7

2 h 2 weeks

Hellige et al, Geochim. Cosmochim. Acta, 2010, in review

Dissolved Sulfide is consumed after 15 minutes

Formation of a FeS-layer on the lepidocrocite surface after 2 h

www.bayceer.de

After two weeks: FeS₂ formation

FeS₂ (pyrite) formation

..... requires dissolved sulfur species

 $FeS + S_n^{2-} \rightarrow FeS_2 + S_{n-1}^{2-}$

Rickards et al, 1995, ACS Symp. Ser. 612

From the oxide surface to a new mineral

Surface bound FeS Precipitation of a new phase

www.bayceer.de

Surface bound FeS

Precipitation of a new phase

2) Transport control of geochemical reactions Fe(II) S(-II

- Transport in porous medium
- Dissolved and solid-phase bound reactants

Is there an effect of flow on reaction rate and turnover?

Sulfide oxidation rate is proportional to concentration of reactive surface complex

>FeOH₂⁺ + HS⁻ \leftrightarrow >FeSH + H₂O

 $\mathsf{R} = \mathsf{k} \cdot \{\mathsf{>}\mathsf{FeSH}\}$

Peiffer et al, ES&T, 1992 & 2007; Dos Santos Afonso et al, 1992

Sulfide turnover decreases with increasing flow rate

Transport matters !

- Penetration front of sulfide depends on flow rate
- Implications for biogeochemistry

At shorter residence time (higher flow rates) sulfide may not be competitive in regard to iron reducing bacteria (sticking to surfaces)

➔ Damköhler numbers

3) The Damköhler number – a usefool tool?

Da = Transport rate (mass/time)

- τ residence time
- t_r characteristic reaction time (1/k)

- Da > 1 reaction-dominated system
- Da < 1 transport-dominated system

Turnover related to Damköhler Numbers - simulations with TBC -

Turnover related to Damköhler Numbers - simulations with TBC -

/www.bayceer.de

www.bayceer.de

Physical and chemical restrictions

... create patchiness !

Summary

Surface bound FeS Precipitation of a new phase

Summary

2) Residence times control turnover rates

3) Distribution of residence time

and kinetic parameters

.... create patchiness

LOG AGE

4.0 3.5 3.0 2.6

2.1

1.6 1.1 0.7

0.2 -0.3 -0.8 -1.2

-1.7

-2.2 -2.7 -3.1 -3.6 -4.1 -4.6

-5.0 -5.5

-6.0

cceptors

Acknowledgements

DFG Research Unit 580 electron transfer processes in anoxic aquifers

DFG Research Group 562 soil processes under extreme meteorological boundary conditions

e-Trap

electro

transfe

e-donors

Geotechnology Research Programme (German Ministry of Education and Research)

Position announcement

Assistant professor in ecohydrology

Department of Hydrology BayCEER University of Bayreuth

Application of Damköhler numbers Nitrate removal in the riparian zone

Ocampo et al, Water Res. Res, 42, 2006

www.bayceer.de

Complilation of data Ocampo et al, Water Res. Res, 42, 2006

- t_r characteristic reaction time derived from field data and adv. disp. reaction modelling
- L distance of nitrate concentration gradient
- V_{GW} GW flow-velocity from field data

$$Da = (L/v_{GW}) / t_{r}$$

www.bayceer.de

Application of Damköhler numbers Mapping of nitrate-removing riparian zones

Consumption of S° + HCI-extractable Fe(II) after two days

