

Biogeochemical processes along the groundwater flow line in a riparian wetland Carl Christian Hoffmann

Voldby Brook and river valley flooding stage

Based on work by

- Mette Dahl 1995. Flow dynamics and water balance in two freshwater wetlands. (PhD)
- Claus Paludan 1995. Phosphorus dynamics in wetland sediments. (PhD)
- Gitte Blicher-Mathiesen 1998. Nitrogen removal in riparian areas. (PhD)
- Carl Christian Hoffmann 1998. Nutrient retention in wet meadows and fens. (PhD)
- Randi Lundshøj Dalgaard 2000. Distribution of iron
 containg phases in a wet meadow (master thesis in Danish)

Biogeochemical processes along the groundwater flow line in a riparian wetland

> Outline

- > Location, Field set-up, and soil profile
- > Groundwater surface water flow in the fen
- > Redox sequence and consequences
- > Mass balances
- > **Denitrification**
- > Green house gases
- > Iron
- > Conclusion

Minerotrophic fen in River Gjern system

Mølgaarde fen

Soil profile

Tracer experiment with bromide

Nitrate reduction

Hoffmann, 1998 ; Hoffmann et al., 2000 Blicher-Mathiesen & Hoffmann, 1999

Area with sulphate reduction

/...

Autotrophic and heterotrophic denitrification

 $5(CH_2O) + 4 NO_3^- + 4 H^+ \rightarrow 5 CO_2 + 2 N_2 + 7 H_2O$

5 FeS_2 + 14 NO_3^- + 4 $\text{H}^+ \rightarrow$ 7 N_2 + 10 SO_4^{2-} + 5 Fe^{2+} + 2 H_2O (1) 5 Fe^{2+} + NO_3^- + 7 $\text{H}_2\text{O} \rightarrow$ 5 FeOOH + 0.5 N_2 + 9 H^+ (2)

ん

ん

Fig. 11. Conceptual model of Fe-S-P interactions in anaerobic sediments. Thick lines and bolded numbers indicate mechanisms of sulfate reduction-enhanced PO_4^{3-} mobilization (see text). SRB = sulfate-reducing bacteria; FeRB = Fe(III)-reducing bacteria; Fe(OH)₃ = amorphous Fe(III) oxide; Fe(OH)₂ = Fe(II) hydroxide.

Roden, E.E. and J.W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction vs. iron-sulfide formation. Arch. Hydrobiol. 139:347-378.

Phosphorus pools in the sulphate reduction zone

Depth	Labile-P	Fe-P	AI-P	Ca-P	Inorganic-P
cm			g P m2		
0-5	0.18445	11.3817	1.35625	0.26040	13.1936
5-15	0.23250	8.2925	2.01500	1.08500	11.5475
15-25	0.00000	1.5810	1.05400	0.84320	3.5836
25-31	0.00000	1.4396	0.87978	0.31992	2.7193
31-41	0.25730	4.8887	3.85950	1.02920	10.0347
Σ 0-41	0.67425	27.5835	9.16453	3.53772	41.0787
Depth	Humic-P	ΣDNRP	Res-P	Org-P	P-Microbial
cm			g P m2	U	
0-5	0.8463	1.9747	0.9765	3.7975	1.9639
5-15	5.1150	9.2225	5.8125	20.2275	5.3475
15-25	2.8458	4.0052	2.6350	9.4860	1.3702
25-31	2.9593	3.3592	2.2394	8.4779	0.7198
31-41	4.3741	3.8595	3.0876	11.0639	1.2865
Σ 0-41	16.1405	22.4211	14.7510	53.0528	10.6879

Mass balances

Nitrogen

Phosphorus

Sulphate

Mass balance 1992

	NH ₄ +-N	NO ₃ ⁻ -N	TN	PO ₄ ³⁻ -P	ТР	SO ₄ ²⁻			
	Kg ha ⁻¹ year ⁻¹								
Gw input	1.52	1897.30	-	3.33	-	972			
Precipitation	6.13	4.31	-	0.89		26			
Gw discharge	0.22	0.03	-	0.22	-	523			
Surface outflow	1.95	18.24	94.41	11.17	16.08	2937			
Retention	5.48	1883.34	1807.20	-7.17	-12.08	-2462			

Mass balance 1993

	NH ₄ +-N	NO ₃ N	TN	PO ₄ ³⁻ -P	ТР	SO ₄ ²⁻	Fe
	Kg ha ⁻¹ year ⁻¹						
Gw input	4.94	2245.73	-	3.48	-	1265	
Precipitation	9.11	4.47	-	0.48		36	
Gw discharge	0.08	0.17	-	0.12	-	505	18.40
Surface outflow	2.45	71.94	105	11.57	20.70	4662	16.69
Retention	11.52	2178.09	2159	-7.73	-16.86	-3866	

Denitrification

ん

Area with high nitrate reduction

Denitrification experimental setup

Flow direction

¹⁵N measurements of denitrification

ん

Denitrification rates

Column no.	¹⁵ N-method	Standard method		
Depth in cm	$\frac{Mmol}{m^{-2}d^{-1}}(g)$	Mmol (g) m ⁻² d ⁻¹		
1: 0-42	243.0 (3.4)	212.6 (3.0)		
2: 42-69	181.7 (2.5)	216.8 (3.0)		
3: 69-111	102.7 (1.4)	136.7 (1.9)		
4: 111-156	45.7 (0.6)	32.9 (0.5)		
	573.1 (7.9)	599.0 (8.4)		

Denitrification rates (Mølgårde)

Nitrous oxide

Nitrous oxide

 N_2O-N in groundwater: 56 µg l⁻¹

 N_2O emission: 5.9 % of N_2O in recharging gw

Ecosystem stability

- > e-donor for denitrification
- > leaching/discharge of nutrients e.g phosphate

Phosphorus pools in the sulphate reduction zone

Depth	Labile-P	Fe-P	AI-P	Ca-P	Inorganic-P
cm			g P m2		
0-5	0.18445	11.3817	1.35625	0.26040	13.1936
5-15	0.23250	8.2925	2.01500	1.08500	11.5475
15-25	0.00000	1.5810	1.05400	0.84320	3.5836
25-31	0.00000	1.4396	0.87978	0.31992	2.7193
31-41	0.25730	4.8887	3.85950	1.02920	10.0347
Σ 0-41	0.67425	27.5835	9.16453	3.53772	41.0787
Depth	Humic-P	ΣDNRP	Res-P	Org-P	P-Microbial
cm			g P m2		
0-5	0.8463	1.9747	0.9765	3.7975	1.9639
5-15	5.1150	9.2225	5.8125	20.2275	5.3475
15-25	2.8458	4.0052	2.6350	9.4860	1.3702
25-31	2.9593	3.3592	2.2394	8.4779	0.7198
31-41	4.3741	3.8595	3.0876	11.0639	1.2865
Σ 0-41	16.1405	22.4211	14.7510	53.0528	10.6879
Surfac	e runoff	Surface	rupoff	Turnover	of Turnover of
			D	Fo-P	Microhial nool
a F	2 m-2 v-1			1 6-1	
0.769		0.886		35.9 yea	ars 12.1 years

What happened to Iron

	NH ₄ +-N	NO ₃ ⁻ -N	TN	PO ₄ ³⁻ -P	ТР	SO ₄ ²⁻	Fe	
	Kg ha ⁻¹ year ⁻¹							
Gw input	4.94	2245.73	-	3.48	-	1265		
Precipitation	9.11	4.47	-	0.48		36		
Gw discharge	0.08	0.17	-	0.12	-	505	18.40	
Surface outflow	2.45	71.94	105	11.57	20.70	4662	16.69	
Retention	11.52	2178.09	2159	-7.73	-16.86	-3866		

Mølgårde surface outflow

Iron

Conclusions

- > Redoxcline identified tracing the groundwater flow line
- Biogeochemical processes linked together by hydrogeological processes
- > Zone of enhanced denitrification with both autotrophic and heterotrophic denitrification
- > N_2O production in wetland but also consumption of N_2O coming from upland agricultural areas \rightarrow overall the wetland act as a sink maybe due to electron acceptor limitation and pH increase (1 pH unit) thereby suspending inhibition of N_2O reductase
- > Longterm stability of fen threatened by external $NO_3^$ load \rightarrow P-release and probably P exhaustion

Thank You for your attentiom