Brackish groundwater response to eco-hydrological management

> Naardermeer wetland The Netherlands

#### **Paul Schot**

Utrecht University

Dagmar Schnitzer Gualbert Oude Essink Utrecht University Deltares

## Content

- 1. Introduction
- 2. Natural flow pattern
- 3. Disturbed flow pattern
- 4. Restoration plans
- 5. Brackish GW interference
- 6. Conclusion

## 1. Introduction

### Fens in The Netherlands

- species-rich vegetation
- high biodiversity
- international importance

#### **Deterioration past decades**

- drainage for agriculture
- GW extraction for industry / drinking water





#### Example: Naardermeer wetland

- located on flat river plain
- bordered by upland recharge area
- providing GW seepage at its foot

#### Fens depend on this GW seepage:

- permanent wet conditions
- alkaline, nutrient-poor water



## 2. Natural flow pattern

→ GW seepage at foot of upland recharge area
→ ... fen development



## 3. Disturbed flow pattern

 $\rightarrow$ 

 $\rightarrow$ 

- a) Drainage on river plain (agriculture)
  - → … lower actual SW (+ GW) levels + Peat subsidence
    - ... cascade of infiltration seepage systems
    - ... Naardermeer now loses water to downstream polders



#### b) GW extraction upland recharge area (industry / dr.water)

- $\rightarrow$  ... lower GW levels recharge area
- $\rightarrow$  ... less seepage in Naardermeer







# Drainage + GW extraction

#### deterioration fen biodiversity

## 4. Restoration plans

#### Fen restoration now underway

- $\rightarrow$  reduction GW extraction
- $\rightarrow$  raising SW levels

(upland recharge area) (river plain)

#### But.... no consideration of brackish GW present 📩



#### Brackish GW related to a former sea arm to the north



#### ... several floods took place in historic times



... brackish water then recharged the aquifer from above ... by density driven flow (fingering)



Post, 2004

#### ... with largest densities concentrating at aquifer bottom



## 5. Brackish GW interference

#### Brackish GW may interfere with restoration

- → fens need fresh GW
- → brackish GW nutrient-rich

#### We modelled effects of:

a) Drainage + GW extractionb) Restoration scenarios

on present distribution brackish GW ,, future ,, ,,

#### Model:

- 2-D vertical section
- density dependent groundwater model (MOCDENS3D)
- run time 250 years

 $\rightarrow$  a) Historic effects of Drainage + GW extraction



Chloride (mg/l)

#### Verification:

#### •compare present Chloride distribution with model

 $\rightarrow$ 



model pattern comparable to field measurements

#### Model results







- 1. Continue current management
- **2. Stop GW extraction** (upstream)
- 3. Raise SW levels

(upstream) (downstream)







#### 3. Raise SW levels





## 6. Conclusion

#### Continuation current hydrological management

- Naardermeer becomes fresher
- Fen vegetation will (eventually) improve
- Stop GW extraction + Raise SW levels
  - Still freshening, but slower
  - Vegetation will improve slower



 $\rightarrow$  restoration has drawbacks



Counter-intuitive results !

Restoration slows down (natural) freshening

Policy & management should incorporate these findings

- adjust actions
- add compensation measures
- •...

