Experimental impact of ammonium, carbon dioxide and water levels on amphibious softwater plant communities

Floris Vanderhaeghe Fons Smolders Jan Roelofs Maurice Hoffmann

Radboud University Nijmegen

Shallow softwater lakes

 Common in NW Europe, mainly on sandy(-loamy) soil Fluctuating water tables: ecologically a disturbance Very stressful (in its pristine state): low on N, P and aquatic C Vulnerable to acidification and eutrophication

Shallow softwater lakes

 Pristine sites typically hold Natura 2000 Habitat types like 3110 and 3130

– Isoeto-Lobelietum– Hydrocotylo-Baldellion

Shallow softwater lakes

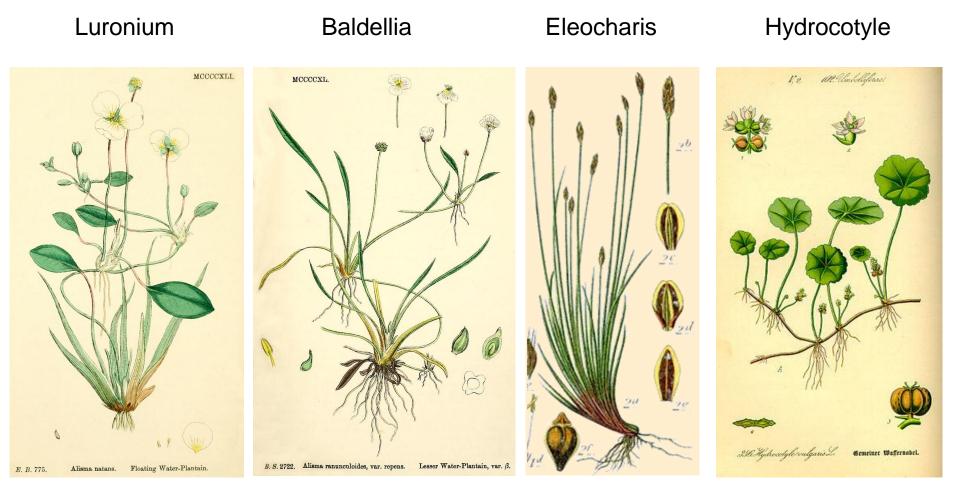
• Challenge:

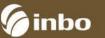
- to improve the efficacy of conservation measures
- to advance predictive ecology for these plant communities

→ insight is needed in the response of macrophyte species to stress and disturbance in various competitive environments

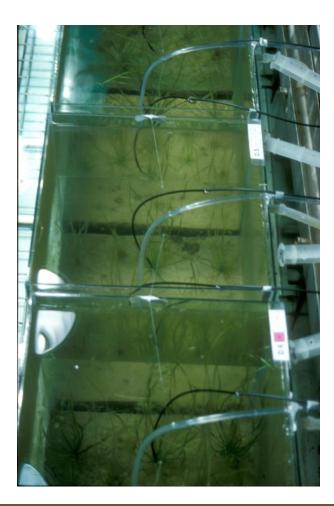
Questions

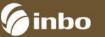
- 1. Considering plant community composition:
 - what is the importance of water level, NH₄⁺ and (aqueous) CO₂ nutrient availability ...
 - ... relative to intrinsic properties of the actual species that are present (species identity; life strategy)?
- 2. Is competitive suppression at work under high NH_4^+ and CO_2 level?

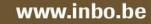

Methods


- Multispecies experiment with 4 selected species:
 - Luronium natans
 - Baldellia ranunculoides ssp. repens
 - Eleocharis multicaulis
 - Hydrocotyle vulgaris
- they all combine traits of 2 or more plant ecological strategies

4 species

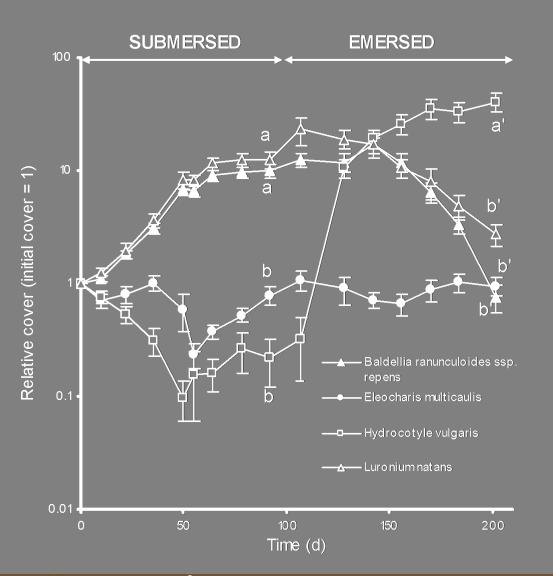



Radboud University Nijmegen 🦸


Experimental plant communities in glass aquaria

- Duration: 202 days in order to simulate one complete growing season
- From day 93 till 115, water level was gradually lowered to attain an emersed state with groundwater at ground level

- Communities were subjected to:
 - 2 levels of CO_2 (none added / 500 μ mol L⁻¹)
 - 2 levels of NH_4^+ (0 / 50 µmol L⁻¹) → full-factorial design
- Monocultures of *Eleocharis* and *Baldellia* were grown at high NH₄⁺ and high CO₂ levels, for comparison with their response in community

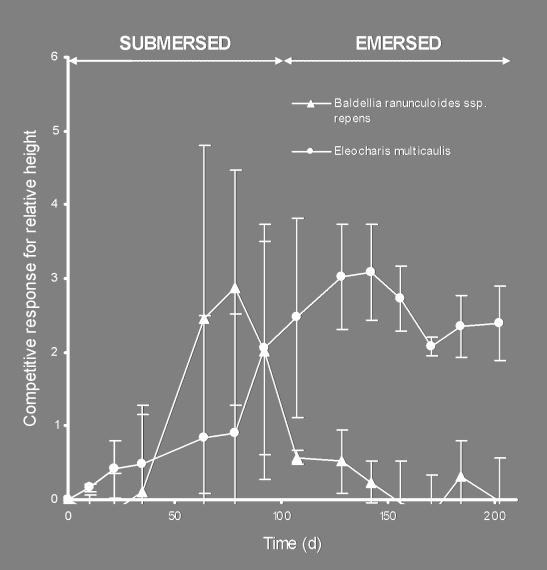


- Treatments were replicated 4 times
- Every two weeks, several population performance measures were collected
- Analyzed as a split-plot design with repeated measures, allowing direct comparison between species

Results

Relative species performance (dominance hierarchy)

- was strongly impacted by water level, but generally not by N or C availability
- was not the same as expected from life strategy theory


(Vanderhaeghe et al., subm.)

Radboud University Nijmegen

Results

Competitive response

- was significantly larger than zero
- depended on species, hydrological stage and performance measure

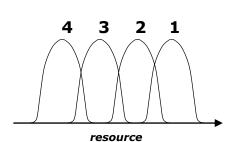
(Vanderhaeghe et al., subm.)

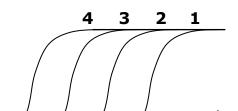
Discussion

- Submersed and emersed stage each had a stable dominance hierarchy, which was hardly affected by nutrient levels
 - ➔ intrinsic species characteristics seem to have outweighed the importance of nutrient levels

Discussion

- Dominance hierarchy in freshwater macrophytes seems difficult to predict
 - possibly because of their functional plasticity




Discussion

- Competition was at work
 - → the actual presence of certain species determines the species positions along the resource gradient (their realized niches)
- Keddy's model

UNIVERSITEIT

REALIZED NICHES

FUNDAMENTAL NICHES

resource

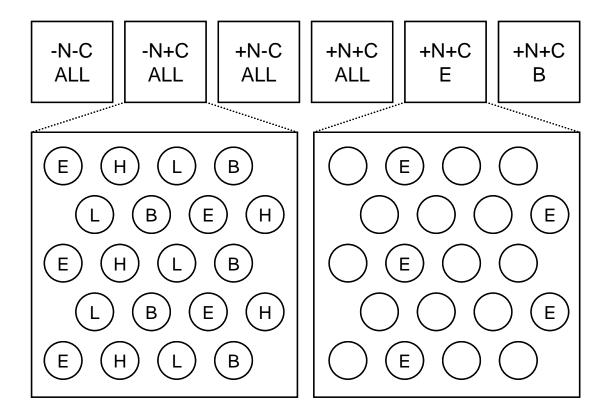
Conclusions

- Hydrological stage was the most important environmental factor
- Plant performance was **species-dependent**
- **Nutrients** did not have major effects during this one growing season
- Dominance hierarchy in freshwater macrophytes seems difficult to predict from current plant ecological theory
- Experimental data of the performance of macrophytes in a community setting are rare and much needed

Many thanks

 Thanks to the owners and nature managers for permissions

- Thanks to all coworkers
- Special thanks to RU Nijmegen for their lab facilities


 Financial support: Fund for Scientific Research – Flanders

• One replication series:

