Eco-Hydrology of Canadian Prairie Wetlands and Management Implications: Synthesis of a 40-year Study

Masaki Hayashi¹ and Garth van der Kamp² ¹Dept. of Geoscience, University of Calgary, AB, Canada ²Environment Canada, Saskatoon, SK, Canada

Northern Pintails Anas acuta Photo: Bob Clark

Aquatic Invertebrate Gammarus lacustris Photo: Dorothy Lindeman

Northern Prairie Region (Prairie Pothole Region)

Semi-arid climate

- Precip. = 300-500 mm/yr
- **Potential ET = 700-800 mm/yr**

Very cold winter

- Temperature down to -30 °C
- Soil frozen to 1-1.5 m

Glaciated plain

Deposition of Glacial Till (up to 300 m)

Clay-rich Low permeability

Undulating topography Numerous depressions

Snowmelt Runoff over Frozen Soil

Pond Depth in Wetland S109, St. Denis

Water Balance of Prairie Wetlands

Crop Rotation in Dry-Land Agriculture

oil seed

wheat

summer fallow

Re-introduction of Permanent Grass Dense nesting cover for protection from predators

Gadwall Duckling (*Anas strepera*) Photo: Bob Clark Permanent grass cover Non-native brome grass (*Bromus inermis*)

St. Denis National Wildlife Area

More than 100 wetlands with a variety of size and permanence.

Photo: Canadian Wildlife Service (CWS)

Effects of Dense Nesting Cover

Infiltration Measurements

Summer (unfrozen) \longrightarrow Spring (frozen)

Infiltration Capacity of the Top Soil

Measured by single-ring infiltrometers

Average, standard deviation, and # of samples

	Grassed			Cultivated		
	Avg.	SD	#	Avg	SD	#
Unfrozen	300	390	11	23	13	15
Frozen	19	36	6	0.3	0.6	3

unit : mm/hour

Water Balance of Prairie Wetlands

Hydraulic Conductivity (*K*) of Glacial Till Groundwater flow rate is proportional to *K*.

Original data: J. Hydrol. 207:42; Hydrol. Process. 18:2011

Groundwater Flow under Wetlands

Shallow groundwater exchange is a major component of water balance.

Groundwater flow in low-*K* till is very slow, very minor component of water balance.

Rate of Water Loss Increases with Shoreline Re-analysis of 35 wetlands from Millar (1971)

Water Depth in St. Denis Wetlands Long-term data collected by Jack Miller (CWS)

Summary and Implications

Permanence of wetland ponds depends on:
(a) Runoff input – size and landuse of uplands
(b) Summer recession – groundwater exchange

→ Restoration/preservation of wetlands need to consider wetland-upland complex beyond a narrow "riparian" margin.

Eco-hydrology of wetlands is controlled by decadal wet-dry cycles, and landuse effects are very slow.

 \rightarrow Long-term monitoring is essential.

Acknowledgement

Funding Ducks Unlimited Canada Natural Sciences and Engineering Research Council Environment Canada Science Horizons Program Canadian Foundation for Climate and Atmospheric Science (DRI Network)

Students and Colleagues Randy Schmidt, Jack Miller, Malcolm Conly, Bill Stolte, David Parsons, David Gallen