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Introduction 

Understanding hydroecological connections is 

difficult! 

Isotopes can help! 

Discuss isotope examples from 

two main areas 

• Radioactive Isotopes 

• Focus on water residence 

times 

• Stable Isotopes  

• Focus on soil & the 

unsaturated zone 



Radioactive Isotope Applications to 

Hydroecology 

• Radioisotopes (e.g., carbon-14 and tritium) used to  

  “label” ecohydrological processes 

• Radioisotopes are underappreciated for understanding 

   cycle or residence times  

• e.g., groundwater residence times in aquifers can be 

long affecting biogeochemical processes at the river 

basin scale for many years. 
Upper Danube Basin 

• Examine water residence 

times of the upper Danube 

using tritium measurements 

of precipitation and river flow 



Precipitation & Danube Tritium (Vienna, 

1960-2008) 
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Time evolution of the TP/TR ratio in the Upper Danube  
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Lumped Parameter Modelling 
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•Precipitation in Vienna 

•Moving average 

•Input function model 

Tritium in Vienna Precipitation (1960-2008) 



Danube Tritium (Vienna, 1960-2008) 
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•Precipitation in Vienna 

•Moving average 

•Danube at Vienna 



Modelled Danube Tritium (Lumpy) 
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• 60% “short” residence time 

component (mean residence 

time of 0.75 years) 

• 40% “long” residence time” 

component (mean residence 

time of 15 years)  

•Average combined residence 

time is about 6 years. 

Model Results 
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• A two-box model provided the best fit. 

• a short residence time component (piston flow 

assumption) and a longer residence time component 

(exponential flow assumption) 

Short (box model 1) 

Long (box model 2) 



Implications of Model Results 

 

• Changes to biogeochemical 

and pollutant sources may 

take “on average” 6 years to 

become apparent in Vienna 

river water & over a decade to 

substantially decrease  

• Estimations of residence/ 

cycle times are crucial at the 

basin scale & radio-isotopes 

are invaluable for this 

 What do these results mean ecologically? 



Stable Isotopes (deuterium & oxygen-18) 

• Stable isotopes are increasingly used to understand 
processes involving water along the 
plant/soil/atmosphere continuum 
 

• In agriculture they are being used to improve water 
use efficiency 
 

• Understand plant/water interactions in natural 
landscapes (ecohydrology) 

•  e.g., evaporation & 

evapotranspiration partitioning 

• where plants get their water 

• deep percolation 

• climate variability 



Where do plants get their water? 

• Trees next to streams get their water from the 
stream right? 

Streamwater 

Groundwater 

• Wrong, they get it from 

groundwater! 

   - Dawson & Ehleringer, 1991, 

Nature 
 

• Stable isotopes can 

be used to define 

where plants get their 

water 



Vadose Zone Stable Isotopes 

Zone of mixed vapor/liquid flow 

San Dimas, California Monocultures 

Newman & Graham, 2008, VZJ 

Zone of liquid flow 

Maximum isotope value 

is at the evaporation front 

Chaparral Ecosystem Isotope Profiles 



Zimmerman et al. (1967, IAEA Symp. Series) 

 
• A classic paper on vadose zone & 

ecohydrological stable isotope studies 

• Percolation with tritium 

• Evaporation & percolation with stable isotopes 

• Model for 2nd stage evaporation 

• Plants (generally) don’t fractionate soil water 

during root uptake - a powerful concept! 



Isotope estimation of 2nd Stage Evaporation Rates 

(Allison & Barnes, 1983, Nature) 

 
• Depth profiles of isotopes can 

quantify 2nd stage evaporation  

• For bare soil or sparse vegetation 
 

• Iteratively fit the bulge and steady 

state region using: 
 

• (d-dres) = (def-dres)exp(-f(z)/ž)  & 
 

• Ž= qavetD/E 
 

• Where d are the delta values at a given 

depth, at the evaporation front and at 

depth respectively, f(z) depth fn for 

variable water content, ž is the decay 

length, q is the ave. water content, and D is 

the diffusion coefficient of HDO in liquid 

water. 
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Evaporation estimates for multiple events from a 

single borehole (Chakir et al. Tunisia) 

 

Phase 

Thickness of the soil 

above the phase 

(cm) 

Evaporation rate 

(mm/year) Mean Evaporation rate 

(mm/year) 

t=0.6 t=0.67 

A 50 
20,7 23,2 

22,0 

B 175 
15,6 17,4 

16,5 

C 280 
10,2 11,4 

10,8 

D 345 
11,0 12,3 

11,7 

E 200 
6,4 7,2 

6,8 



Vadose Zone Sampling for Isotopes 

(deuterium and oxygen-18) 

• Direct sampling of vadose water in field 
• Suction cups 

• Zero tension samplers 

• Passive wick lysimeters (flux and water samples) 

• Passive wicks for snowmelt percolation (Frisbee et al., 

2010, pts. 1 & 2, HP) 

• No extraction necessary 

• Difficult to sample deeper vadose zone 
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Cumulative percolation at 1 meter depth using flux meters 

in a semiarid arroyo in New Mexico 

• for more information 

see Gee et al., WRR 

2008 

• Multiple flux meters can be used to understand study site 

spatial variability 

• New Mexico results 

show the importance 

of topography on 

percolation 
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Flux Meter Samples 

Average 

Precipitation 

Flux meters for stable isotope sampling 

• Cotton field percolation at 1 meter depth, Indus Basin, 

Pakistan 

• Isotope 

results show 

effects of 

transient 

percolation & 

subsequent 

evaporation 

events 

from Naveed Iqball 



Vadose Zone Sampling for Isotopes 

(deuterium and oxygen-18) 

“Indirect” sampling by collecting soil, 
sediments, or rock from the vadose zone 

• Hand augering 

• Coring with drill rig or direct push system 

• Can sample very deep profiles 

• Good storage potential 

• Requires extraction 

 



Soil sample extraction for isotopes 

• Cryogenic Vacuum Distillation 

• Azeotropic Distillation 

• Both methods are tedious & are often 

problematic (see e.g., Araguas-Araguas, 1995, J. 

of Hydr.) 

 from Naveed Iqball 

• There may now be a 

better way!  



Recent Development 

• A better way for soil/core porewater isotope analyses? 

• Equilibration method for soil samples using an laser 

stable isotope analyzer for water vapor (Wassenaar et al., 

2008, EST) 

• In field, put sample in zip top bag, in lab fill with dry air, equilibrate 

• Using transfer line with needle, pump air directly into instrument  

• up to 30 samples/day 

• This method is much less 

prone to problems than 

traditional extraction 

methods & is faster & easier 



Example Laser Spectrum 

H2
18O H2O HDO 

• Each type 

of water 

molecule 

has a 

unique 

optical 

absorption 

frequency 



Conclusions 

• Isotopes can be a powerful approach for 

addressing a broad range of hydro-ecological 

problems 

- Evaporation and evapotranspiration partitioning 

- Deep percolation 

- Residence/cycle times using radioactive isotopes 

- Many others 

 

Thank You! 
 

 


