Variation in groundwater ecosystems impacted by agricultural landuse

Kathryn Korbel¹, Peter Hancock², Peter Serov³, Richard Lim¹, Grant Hose⁴

University of Technology, Sydney, Australia
 Australian Laboratory Services, Armidale, Australia
 NSW Office of Water, Armidale, Australia
 Macquarie University, Sydney, Australia

Murray-Darling River Basin, Australia

- Australia's most important agricultural region

 Produces ~33% of food
- Rivers & floodplains support
 - 40% of all Australia's farms
 - 75% of all irrigated crops & pastures

North-west New South Wales

- Principal cotton growing region in Australia
 - Crops irrigated from rivers & alluvial groundwater
- Dryland (non-irrigated) cotton & other crops
- Some cattle grazing

FACULTY OF

Are groundwater ecosystems impacted by these activities???

• Intensive agriculture leads to changes in groundwater conditions

 Effects greatest for irrigated areas because of greater connectivity between surface and aquifer

Our hypothesis...

• There will be differences in the groundwater ecosystems between areas of different land use

Description of region

- Gwydir R alluvial aquifer near Moree
- Region semi-arid, seasonal (summer dominated) rainfall

FACULTY OF

SCIENCE

MACQUARIE

About the region

- Intensive agricultural landscape
 - Irrigated cotton crops
 - Dryland cotton
 - Beef grazing

Study location

Methods

- Study region
 - 19 sites (bores) around Moree
 - 10 30 m deep
 - Sites allocated to either
 - Irrigated cropping
 - Non-irrigated cropping
 - Grazing

 Bores sampled in winter (post harvest) and summer (growing season)

Sampling Methods

- Pump 300 L for stygofauna
 - Water filtered (63 µm) preserved in 100% ethanol
 - ID to morphospecies
- After 300 L take sample for microbial analysis & water quality
 - Analysed for
 - 55 agrochemicals
 - Nutrients
 - DOC

FACULTY OF

Microbiological Methods

- Biolog Ecoplates[™]
 - Indicate microbial community through metabolic fingerprinting
 - Inoculated with groundwater (including fine sediments)
 - Colour development after 6 days at 590 nm

Microbiological Methods(cont)

- Cotton strip assays
 Calico placed in bores
 - Left for 6 weeks

FACULTY OF

- microbes degrade cellulose
- Loss of tensile strength directly relates to microbial activity

13

Data analysis

- Univariate data
 - 2-way ANOVA

- Multivariate data
 - 2-way PERMANOVA
 - nMDS
 - RELATE

Water quality results

- Agrochemicals rare

 diethyl atrazine at 2 irrigated sites
- Nitrate lower at grazing sites
- Reactive P higher at grazing sites
- DOC higher in summer across all sites
- No difference in water quality profile (multivariate analysis)

FACULTY OF

SCIENCE

MACOUARIE

Summary

- Water Quality
 - Grazing sites less N and more P

Microbial assemblages (Cotton strips)

• No difference in cotton strength

FACULTY OF

SCIENCE

MACQUARIE

 − Microbial activity similar between land uses

Winter 📕 Summer

Microbial assemblages (Biolog Plates)

- Functional richness of assemblages similar between land uses
 - No sig differences

- Assemblage differences
 - Significant interaction

FACULTY OF

 Summer non-irrigated differed to other land uses

Summary

- Water Quality

 Grazing sites less N and more P
- Microbial assemblages
 - No difference in cotton breakdown
 - Functional richness similar
 - Non-irrigated assemblages differ in summer

Stygofauna results

- 21 morphotaxa recorded
 - Acarina 12 taxa
 - Copepoda-harpacticoids cyclopoids
 - Syncarida- Anaspidacea Family A Bathynella Notobathynella Chilibathynella
 - Amphipoda-Paramelitidae sp
 - Ostracoda
 - Oligochaeta

Oligochaetes

Mites

MACQUARIE UNIVERSITY FACULTY OF SCIENCE

Stygofauna results

- No difference between seasons
- Significant difference with land use
 - Abundance p=0.001
 - Richness p<0.001

FACULTY OF

SCIENCE

MACQUARIE

UNIVERSIT

Dominant taxa

- Copepoda most abundant
- More oligochaeta at irrigated sites
- No difference between season

FACULTY OF SCIENCE

MACQUARIE

UNIVERSITY

Winter

Summer

Stygofauna results

- Assemblages differ between all land uses
 - all groups different (P<0.05)

Irrigated Non-Irrigated Grazing

FACULTY OF

SCIENCE

Stygofauna & microbes

- Little correlation between stygofauna and microbial assemblages
 - -r = 0.10
 - Sites with similar stygofauna had little similarity in microbial assemblages

Summary

- Water Quality

 Grazing sites less N and more P
- Microbial metabolism
 - No difference in cotton breakdown
 - Functional richness similar
 - Non-irrigated assemblages differ in summer
- Stygofauna

FACULTY OF

- Differences in assemblages among all land uses
- Irrigated highest abundance and richness
 - Changes consistent with disturbance
- No correlation with microbes

Discussion

- We have shown differences between land uses across all components
 - Patterns across components don't follow model predictions
- Need to reconsider our model
 - The paradigm is for 'bottom up' control
 - Is top down control possible?
 - Would this account for our results?

Discussion

FACULTY OF

- Environmental gradient weak because of limited crop planting
 - Drought reduced recent crops by ~80%
 - Few crops = few chemicals

Discussion

- Ecosystem components respond at different temporal scales
 - Water quality rapid (here at least)
 - Microbes days to weeks
 - Stygofauna months to years?
- Need to consider these different temporal scales in sampling & monitoring

Conclusions

- Groundwater ecosystems vary with land use
 - Differences evident in water quality, microbial assemblages and stygofauna
 - Gradient weak because of limited irrigation?
- Temporal scale of sampling important to show effects across all ecosystem components

Acknowledgements

- Andrew Boulton
- Cotton CRC
- NSW Office of Water,
 - Peter Matthews
 - Analytical Lab, Arncliffe
- Josie Lategan, Chris Whetters, Sarah Stephenson
- This study was funded by...

