NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY

May 3rd, 2011

Local physical habitat quality cloud the effect of predicted pesticide runoff from agricultural land in Danish streams

Jes J Rasmussen Annette Baattrup-Pedersen Brian Kronvang

Outline

- > Transport routes for pesticides to streams
- > Introduction to the SPEcies At Risk (SPEAR) concept
- Predicted pesticide runoff in Danish streams and its impact on stream macroinvertebrates
- > The role of the physical properties
- > Confounding factors

I. Major transport routes for pesticides

Frequency is similar while max. concentration is significantly higher in small streams

	Large streams		Small streams	
	Frequency	Concentration	Frequency	Concentration
	(%)	Max (µg/l)	(%)	Max (µg/l)
Isoproturon	41	0.13	48	2.1
Diuron	37	0.073	29	0.36
Bentazon	25	0.028	37	1.2
Fenpropimorph	0	0	3	0.11
Dimethoat	2	0.034	4	0.12

Examples of frequency and maximum concentrations of pesticides in two stream types from the Danish Monitoring Program (NOVANA)

Jes J Rasmussen H

HydroEco May, 2011

II. SPEAR concept

Modified after Liess et al., 2008

III. Predicted pesticide runoff in DK streams

212 sites sampled yearly in 2004-2007

The RP model considers

- > Precipitation events
- > Soil characteristics
- > Crop types and growth phases
- > Agricultural intensity
- > Field slopes
- Applied amounts for a generic compound was set to constant (limited data)

Impact of predicted pesticide runoff

%SPEAR abundance represents the arithmetric mean of 4 yearly samples from 2004-2007

IV. The role of physical properties

Parameter	DCA 1	DCA 2		
Silt (%)	0.35***	-		
Gravel (%)	0.40***	-		
Agricultural intensity	0.11*	-		
Upstream riparian habitat quality	0.31***	-		
Catchment size	-	0.43***		
Substrate heterogeneity	-	0.22***		
Pearson correlation with DCA ordination axes				

*** P<0.001

Jes J Rasmussen

HydroEco May, 2011

V. Confounding factors

NATIONAL ENVIRONMENTAL RESEARCH

INSTITUTE

AARHUS UNIVERSITY

 Applied amounts of pesticides increase with decreasing latitude – but is not picked up by RP

Schriever et al., 2007b

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY

Jes J Rasmussen H

HydroEco May, 2011

Buffer strips

- Measures of buffer strip
 retaining capacity are not
 included in the RP model
- Buffer strips are known to retain significant proportions of pesticide runoff

Field based data from 2009 in 15 Danish low-order streams. Pesticides sampled with event triggered samplers.

Buffer strips and predicted pesticide runoff

Field based data from 2009 in 15 Danish low-order streams. Pesticides sampled with event triggered samplers.

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY

Conclusion

- Buffer strip characteristics improve predictive power of the RP model – and is tightly coupled to the occurrence and toxicity of agricultural pesticides in DK streams
- Despite the presence of buffer strips and relatively low pesticide application rates, the toxicity of found pesticide mixtures still exceed the threshold of expected community change
- However, poor physical stream properties can cloud these changes – at least in the absence of extreme events of pesticide contamination

Jes J Rasmussen

HydroEco May, 2011

How do we integrate physical stream properties in the assessment and prediction of risk?

