Sensitivity of headwater stream temperature to riparian land management

David M. Hannah¹, K.M. Kantola^{1&2}, I.A. Malcolm², C. Soulsby³ & A.F. Youngson²

¹Geography, Earth & Env. Sciences, Uni. of Birmingham, UK.

d.m.hannah@bham.ac.uk

²Marine Scotland, Freshwater Laboratory, UK.

³Northern Rivers Institute, University of Aberdeen, UK.

Structure

- Context and research gaps → aims
- Field area and sites: Girnock burn (forest vs. moorland)
- Data and methods
- Results:
 - stream temperature → variation

 - energy balance (heat budget) → processes
- Conclusions for Girnock burn
- Extension of research to Loch Ard
- Future research

Context and research gaps

- Water temperature is an important and highly sensitive variable → physical, chemical and biological processes
- Poikilotherms: aquatic organisms that cannot regulate body temperature (including invertebrates and fish)
- Stream temperature anticipated to increase with climate warming
- Stream temperature controlled by transfers of heat and water to/ from the river system
- Very few stream energy balance studies of fundamental processes

Context and research gaps

- Land and water management impact on heat exchanges
 modify river thermal characteristics
- Several organisations promoting riparian forest planting as climate change adaption measure → reduce water temperature extremes → improve river thermal habitat
- However, scientific evidence is limited for management decisions due to lack of:
 - high quality, medium- to long-term data
 - information on semi-natural and native forest
 - understanding of physical process (energy exchange)
- Address research gaps → assess headwater stream temperature sensitivity under different land management (forest) treatments

Aims

- 1. To characterise spatial and temporal variability in riparian microclimate and stream water temperature regime across different land management (forest) treatments
- 2. To identify the hydrological, climatological and sitespecific factors affecting stream temperature
- To estimate the energy balance at sites representative of each treatment → physical process understanding about dominant heat exchanges driving thermal variability
- 4. To use 1-3 to assess stream temperature sensitivity under different land management treatments and hydroclimatological scenarios

Glen Girnock, Cairngorms

- Semi-natural, upland
- Lochnagar massif → drains to River Dee
- 230-862 masl; 30.3 km²
- Heather moorland with semi-natural forest
- Sub-Arctic climate
- 1100 mm precipitation (25% snowfall)
- Air temperature range:
 -27°C to 25°C

Girnock burn study reaches

Heather moorland (no trees)

- 310 masl; 20.7 km²
- 9.5 m wide; 0.01 m m⁻¹

Semi-natural forest

- Birch, Scots pine, alder, willow → mixed
- 230 masl; 31.0 km²
- 7.6 m wide; 0.02 m m⁻¹
- No tributary inflows
- Very similar geomorphology
- Detailed previous research

Data and methods

- 15 min data collected over 2003-2004 calendar years
- Moorland site dewatered in summer 2003
- Measured microclimate (including K and Q^*), water column and streambed temperature, bed heat flux, and water level

Data and methods

Estimated energy balance components:

$$Q_n = Q^* + Q_h + Q_e + Q_{bhf} + Q_f$$

- Latent heat (Q_e) by Penman-style equation for evaporation
- Sensible heat as product of Q_e and Bowen ratio
- Fluxes positive (negative) towards (away) surface ->
 add (remove) heat to (from) water column
- 15 min fluxes (Wm⁻²) → daily totals (MJm⁻²d⁻¹)

- Water column (moorland cf. forest): mean warmer in winter-spring but slightly cooler in summer; minimum warmer in spring and autumn-winter; maximum warmer with greater differences in summer; range greater
- Streambed: <u>forest</u> tracks water column; <u>moorland</u> vertical diff. and lags → streambed warmer in winter and cooler in summer = GW-SW interactions
- Air (moorland cf. forest): mean very slightly cooler but minimum cooler, maximum warmer and range greater (80 m altitude diff. ≈ 0.5°C diff.)

- Relative humidity: lower for moorland probably due to greater wind venting of moist air
- Wind speed: much higher (>6 times) and much more variable for moorland owing to greater exposure

moor - forest: + higher; -

Diff.

- Net shortwave radiation (K_s^*) : greater for moorland; max. diff. summer
- Net longwave radiation (L_s *): greater for forest due to canopy effects
- **Net radiation** (Q^*): greater for moorland, except in winter. For forest, winter L_s^* offsets K_s^* ; but, in other seasons, forest shading \rightarrow lower Q^*

- Sensible heat (Q_h) : heat source in autumn-winter and sink in spring-summer due to changing air-water column temperature gradients, with gain (loss) greater in winter (summer) for moorland
- Latent heat (Q_e) : predominantly heat sink (i.e. evaporation) but magnitude and variability higher for moorland due to higher wind speed and lower RH; Q_e is energy source (i.e. condensation) during river icing

- $Q_{\it bhf}$ much smaller than fluxes at air-water interface, esp. for forest
- Greater (less) in winter (summer) for moorland, with spring and autumn transition because: (1) small, consistently positive Q_{bhf} for forest (i.e. warmer sediments at depth); but (2) clear Q_{bhf} annual cycle for moorland (i.e. summer sink: winter source) due to reversal of bed thermal gradients
- Contrasts between reaches probably due to GW-SW interactions (e.g. Malcolm et al., 2005).

- Q_n heat source in summer and sink in winter with autumn/ spring transitions
- Forest: Q_n dominated by energy receipt at air-water interface (Q_{sn})
- Moorland: Q_n tracks Q_{sn} but offset by Q_{bhf} cycle \rightarrow reduce inter-site diff.

Conclusion for Girnock burn

- Unparallel longer-term view on stream thermal dynamics under different land management (forest) treatments
- Riparian forest moderates: microclimate

 heat budget

 stream thermal variation
- Forest (cf. moor) stream temp cooler; but need to consider range of stream temperature descriptors and seasonality
- Riparian microclimate altered by forest (cf. moorland):
 - reduced solar radiation, longwave loss and wind speed
 - increased humidity
 - limited mean air temperature difference but lower range
- Highlights importance of energy transfer processes and hydrological fluxes (i.e. GW-SW interactions) in controlling stream temperature

Conclusion for Girnock burn

- Net radiation dominant heat source (sink) in summer (winter); sensible heat is sink (source) in summer (winter); latent heat predominantly sink
- Stream energy balance modified by forest (cf. moorland):
 - net radiation lower in summer and higher in winter
 - sensible heat and latent heat fluxes less variable
- First study of mixed, semi-natural woodland → notably different results to work on coniferous forest → debate remains about impact of riparian land management
- Lesser difference for mixed woodland may be due to forest architecture and tree planting practice, but confounding factors other than forest (hydrology, latitude etc.) → assess transferability of findings → Loch Ard

Loch Ard, western Scottish Highlands

Loch Ard: emperature

- Water column: mean and maximum open > semi-natural > conifer. in summer, but semi-natural > conifer. > open in winter; minimum conifer. > semi-natural > open; range very subdued for conifer.
- Air: mean open > semi-natural > conifer but seasonality less marked than for water column; range much larger for open ≈ semi-natural cf. conifer.

Thus, Loch Ard findings seem to support our previous research

Mean Q_{bhf} : semi-natural 0.42 > open 0.01 > conifer. -0.11 MJm⁻²d⁻¹ Mean Q_n : open 4.58 > semi-natural 4.48 > conifer. 0.77 MJm⁻²d⁻¹

Future research

- Process basis to understand and model stream thermal impact of riparian forest practice → inform decisions by land and water resource managers → fisheries managers
- Finer scale processes vs. upstream landscape controls:
 - role of hydrology (water sources and flowpaths)
 - landscape configuration
 - hydraulic retention time for reach scale equilibration
 - sub-reach heterogeneity
 - energy flux estimation methods
- Better understand scales of influence of riparian land cover on headwater stream temperature response

Sensitivity of headwater stream temperature to riparian land management

David M. Hannah¹, K.M. Kantola^{1&2}, I.A. Malcolm², C. Soulsby³ & A.F. Youngson²

¹Geography, Earth & Env. Sciences, Uni. of Birmingham, UK.

d.m.hannah@bham.ac.uk

²Marine Scotland, Freshwater Laboratory, UK.

³Northern Rivers Institute, University of Aberdeen, UK.

End of presentation slides

