Measuring river bed denitrification: benefits of using both a laboratory and in situ approach

Katrina Lansdown, Mark Trimmer, Kate Heppell, Sami Ullah, Louise Heathwaite, Andrew Binley & Hao Zhang

The River Leith (Cumbria, UK)

- Groundwater-fed, gaining reach
- River bed = sand + gravel over s/stone
- · Lowland area, agricultural land use
- Groundwater nitrate > surface water nitrate

Methods (Field)

- Sediment cores from piezometer installation screened for pathways of dissimilatory nitrate reduction (June 2009)
 - 8 sites (4 riffles, 4 pools) within 250m reach
- 5cm slices from 4 depths (5-10cm, 15-20cm, 40-50cm, 60-86cm)

Methods (Laboratory)

- •¹⁵N assay:
 - sediment slurries
 - ¹⁵NO₃⁻ spike
 - Measure production of ¹⁵N-N₂
- "Bioavailable" organic carbon:
 - incubation of sediment
 - Measure production of CO_2

Methods (Laboratory)

- ¹⁵N assay/ "Bioavailable" carbon:
 - Measure production of ¹⁵N-N₂

– Measure production of CO_2

Complete

turnover of

- Denitrification potential:
 - decayed with depth
 - was highest in riffle sediments

Rate of denitrification (nmol 15 N g⁻¹ dry sed h⁻¹)

(ANOVA: depth $F_{3,23} = 8.43$, p < 0.001, habitat $F_{1,23} = 14.14$, p = 0.001, depth x habitat $F_{3,23} = 5.95$, p = 0.004)

- Denitrification potential:
 was correlated with CO₂ production
- Carbon addition expmt.
 - Response of denitrification to complex carbon?
 - Carbon source =
 bacteriological peptone

• 5 " CH_2O " + 4 $NO_3^- \rightarrow 2N_2$ + (4 HCO_3^-, CO_2) + 3 H_2O - 920 nmol C added: 920 nmol CO_2 = 100% yield

Yield as a proportion of carbon equivalents added (%)

736 nmol N₂ (as N) = 100% yield

Yield ${}^{15}N-N_2 \approx$ Yield CO₂, denitrifiers can access all carbon that is bioavailable

Yield ${}^{15}N-N_2$ < Yield CO₂, denitrifiers **cannot** access all carbon that is bioavailable

At depth in the river bed (> 40cm) denitrification capacity is reduced by inability of denitrifiers to metabolise complex carbon.

- Fate of nitrate also changes with depth in the sediment profile
 - shallow sediments = denitrification
 - deeper sediments = "assimilation"

¹⁵NO₃⁻ budget as N equivalents (nmol of N in each at end of incubation)

Function of C availability to denitrifiers?

Methods (in situ)

- Inject ¹⁵NO₃⁻ into the river bed and collect samples over time
 - Ambient [NO₃-]
 - Match [dissolved O₂]
 - Syn. river water + KCI

Methods (in situ)

 ¹⁵N label was recovered as N₂ however loss of tracer by advection/ dispersion was substantial

Denitrification: potential vs rate

- Potentials measured in the lab were higher than in situ rates
 - Effect of oxygen?

Conclusions

- Denitrification capacity within the river bed is affected by the differential ability of denitrifiers, and the microbial community as a whole, to metabolise an array of organic substrates
- In situ method offers a means by which laboratory findings (and more) can be tested in the river bed

Methods (Laboratory)

• ¹⁵N assay:

- sediment slurries
- (< 2mm sediment + syn. river water)
- O₂ removed
- Ambient NO₃⁻ removed
- Add ¹⁵NO₃ spike
- Measure production of ¹⁵N-N₂
- "Bioavailable" organic carbon:
 - Aerobic incubation of < 2mm sediments
 - Measure production of CO₂

Dissolved oxygen (in situ)

Sediment characteristics

Habitat	Band	<i>n</i> =	Depth (cm)	Substrate	Median grain	Organic C
					size (µm)	(%)*
Pool	А	4	5-10	Sand with gravel	465	0.05 ± 0.01
Pool	В	4	15-20	Sand with silt	283	0.06 ± 0.1
Pool	С	4	45-50	Sand with silt	297	0.02 ± 0.01
Pool	D	4	60-86	Sand with silt	271	0.02 ± 0.01
Riffle	А	4	5-10	Sand and gravel	1589	0.07 ± 0.05
Riffle	В	4	15-20	Sand and gravel	1485	0.05 ± 0.03
Riffle	С	4	40-50	Sand with silt + gravel	439	0.02 ± 0.02
Riffle	D	3	64-85	Sand with silt	300	0.03 ± 0.02

Habitat/	CO ₂ produced	CO ₂ flux	¹⁵ N-N ₂ recovered	Denitrification rate *
Depth	(nmol vial ⁻¹)	$(nmol g^{-1} h^{-1})$	(nmol N vial ⁻¹)	$(nmol N g^{-1} h^{-1})$
Pool A	719 ± 167	8 ± 2.3	119 ± 34	1 ± 0.2^{a}
Pool B	412 ± 111	6 ± 1.4	72 ± 18	0.5 ± 0.16^{a}
Pool C	272 ± 32	4 ± 0.5	35 ± 11	$0.1\pm0.08^{\mathrm{a}}$
Pool D	283 ± 36	4 ± 0.3	41 ± 10	0.2 ± 0.05^{a}
Riffle A	1676 ± 371	15 ± 3	976 ± 164	11 ± 3^{b}
Riffle B	760 ± 125	8 ± 1.2	469 ± 268	$5 \pm 3.5^{\circ}$
Riffle C	422 ± 98	5 ± 1.3	70 ± 53	0.4 ± 0.36^a
Riffle D	400 ± 190	4 ± 1.9	10 ± 1	0.00 ± 0.04^a