THE EFFICIENCY IN NITROGEN REMOVAL OF AN IRRIGATED BUFFER AREA

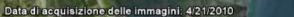
ACQUE RISORGIVE

 $REGIONE \; {\sf del} VENETO$

Bruna Gumiero University of Bologna **Bruno Boz** University of Padova

Paolo Cornelio Consorzio Acque Risorgive

Hydro*Eco´* 2011



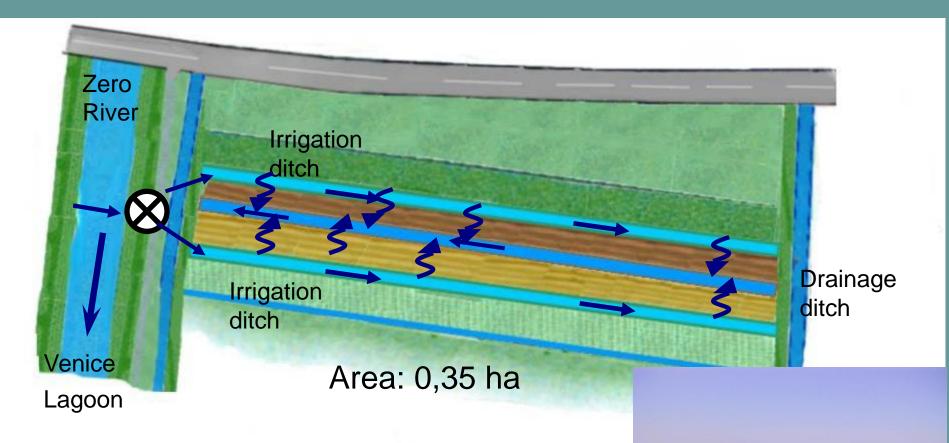
LOCATION:

Conisiolo, Mogliano Veneto TV

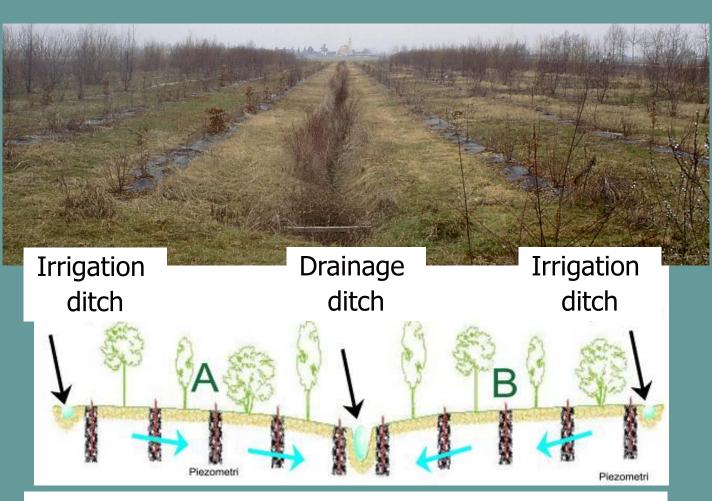
Image © 2011 European Space Imaging Image © 2011 DigitalGlobe

Data SIO, NOAA, U.S. Navy, NGA, GEBCO 45°30'07.80"N 12°22'58.70"E elev 0 m

WOODED BUFFER AREA


In 1999 a cultivated area of about 30 ha was converted in a afforesterd buffer area irrigated with fresh water from the Zero river, so the wet woodland could oparate similarly to a natural riparian woodland

Subcontinental T. from 1 to 23 °C 900 mm rainfall Silty clay loam



RIPARIAN WOODLAND: EXPERIMENTAL SITE

Monitoring of the buffering efficiency of a wooded areas on non-point pollution sources of nitrogen.

EXPERIMENTAL SITE

Ridges and furrows facilitate sub-superficial water flow throughout the field from the inlet point, represented by irrigation ditches, to the parallel drainage ditches localized at lower elevation

TREES and SHRUBS

Salix alba L Salix triandra Alnus glutinosa Quercus robur Acer campestre Corylus avellana Crat. monogyna Fraxinus ornus Frangula alnus

MONITORING PLANE

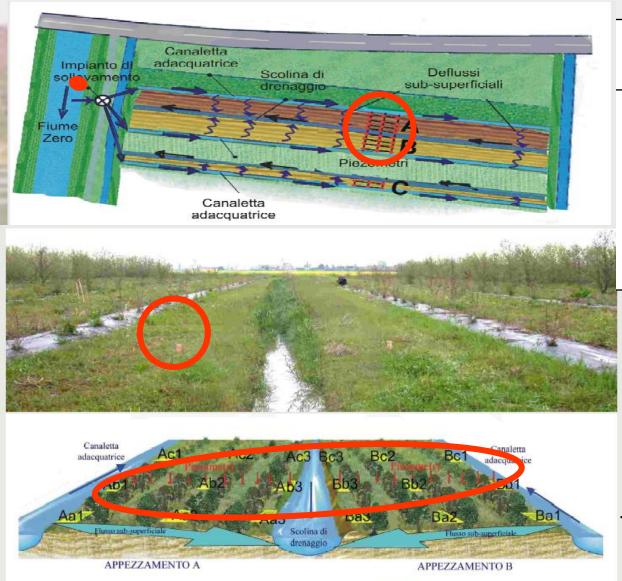
Nitrogen Control by Landscape Structures in Agricultural Environments Research Project 1997 – 2000 European Commission DGXII

Monitoring activity started in October 1999, two phases: 2000-2002 (2 plots) and 2008-2010 (only plot A)

-hydrological and meteorological daily parameters

-water samples from piezometers and river

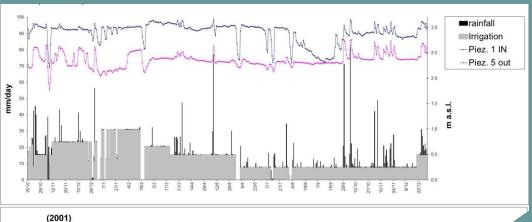
- seasonal **soil** samples collection in different zones and different layers

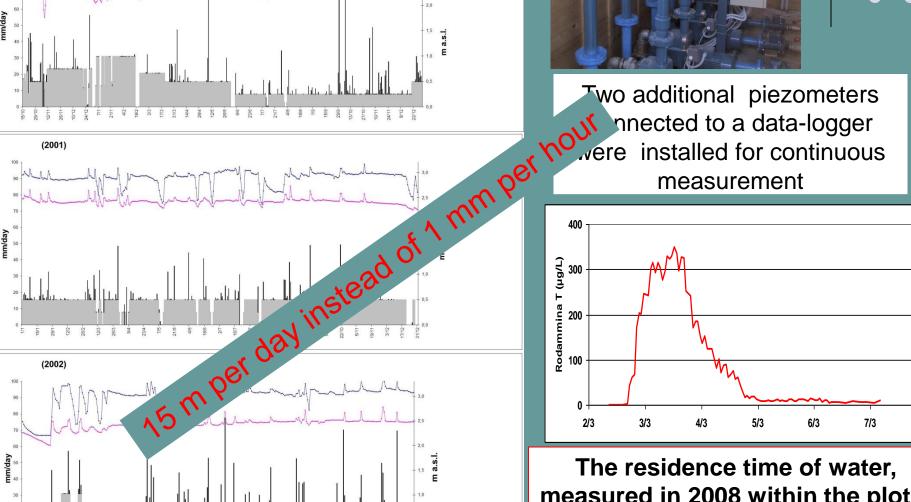

- vegetation and litter : biomass, N and C content

- Wood: biomass, N, P and C content

- microbial communities by DNA extraction

HYDROLOGY and WATER MONITORING

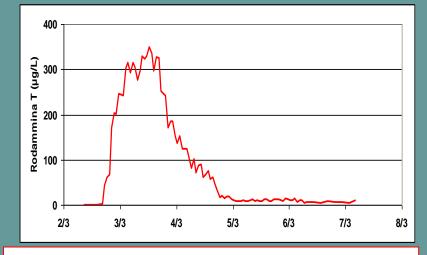

Stazioni di campionamento dei suoli



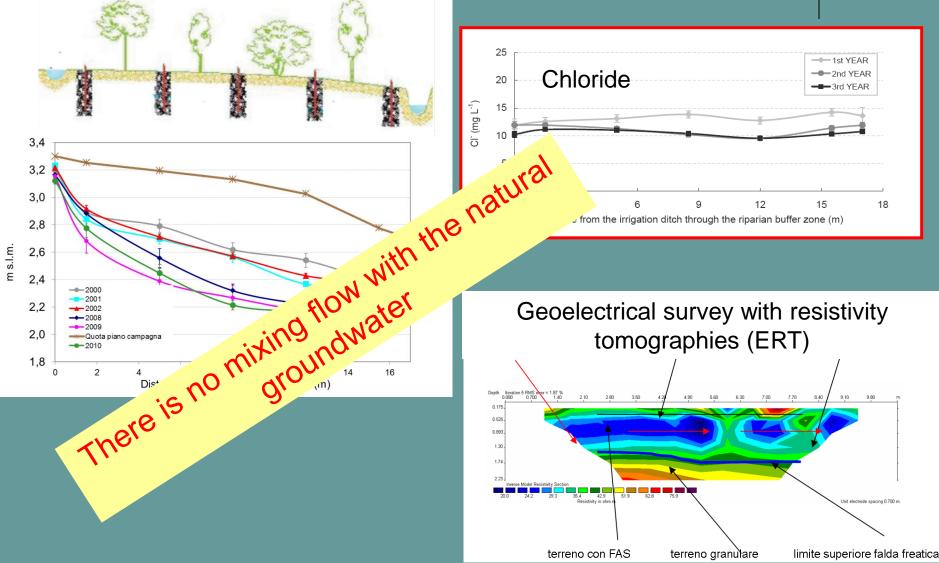
	I Irrigation						
Year							
	(m-cu/ha/year)						
1999 - 2000	51.917						
2000 - 2001	48.060						
2001 - 2002	48.600						
2007 - 2008	61.389						
2009	55.046						
2010	51.431						

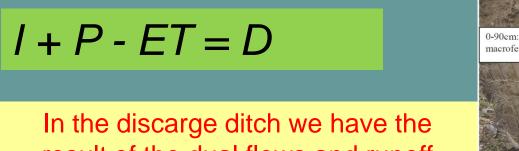
The total pumped volumes were not changed to compensate for different season water demand, except for two months in winter.

SOIL HYDROLOGY

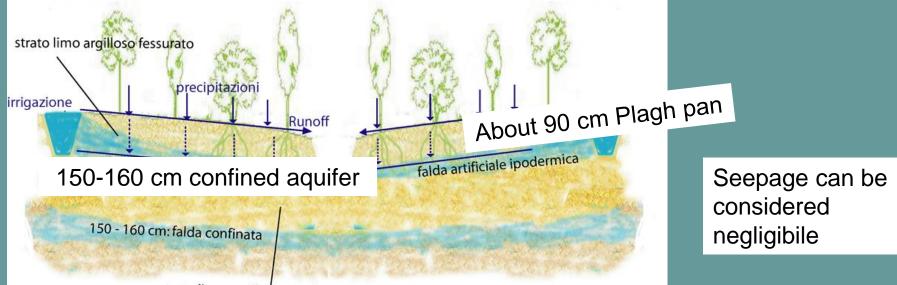


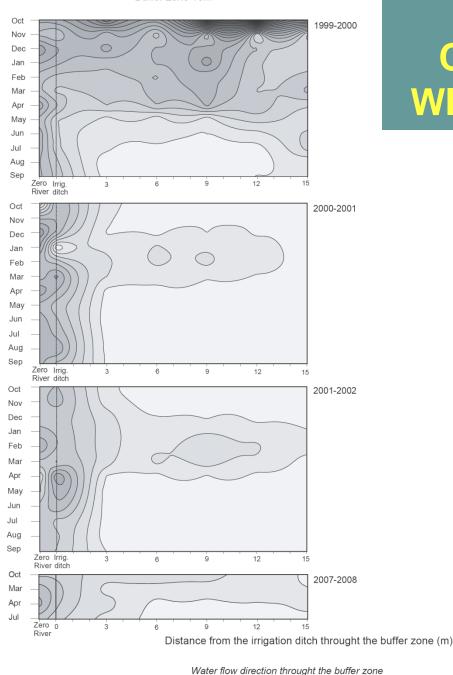
5/2 2/2/2/2 2/2/2/

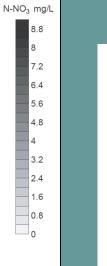



The residence time of water, measured in 2008 within the plot A by RWT tracer, was 24.7 hours.

SOIL HYDROLOGY




result of the dual flows and runoff


strato limo argilloso non fessurato impermeabile

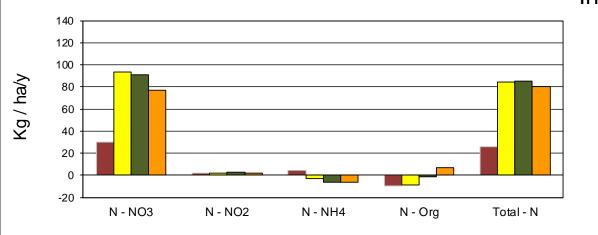
As a consequence of the irrigation, a suspended superficial aquifer (with a depth between 25-80 cm) was created on a While the upper soil layer was subjected to the normal seasonal cycle.

Buffer zone 15m

N-NO₃ CONCENTRATION WITHIN THE SYSTEM

Considerable removal already at 3-4 m from the irrigation ditch. More evident during the warm season.

(Gumiero et al. 2011)


NITROGEN REMOVAL

2002

87%

91

Nitrogen Retention

2001

88%

93

Remotion

Kg/ha/y

 $N - NO_{a}$

2000

30%

30

In discharge ditch

The removal capacity increased strongly from 1° to 3° year

Removal of the organic nitrogen

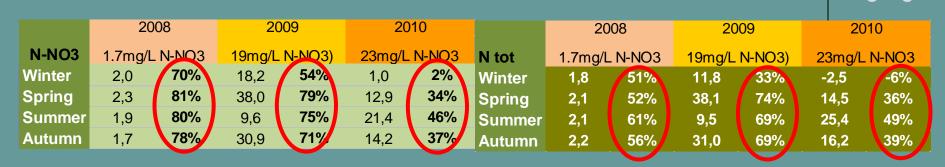
$\mathbf{N} = \mathbf{N} \mathbf{O}_3$	50	0070	55	0070	51	01 /0		107						
N - NO ₂	2	77%	2	86%	3	89%	2	67%	Ď					
N - NH ₄	4	25%	-3	-17%	-6	-42%	-6	-72%	0					
N - Orq	-10	-78%	-9	-102%	-2	-19%	7	18%	o l	In	In piezometers			
Total - N	26	20%	84	62%	85	65%	80	56%	,	111	ρισζυι			
Irrigation Volume	77 mc / Ha giorno		154 mc / Ha giorno		154 mc / Ha giorno		205 mc / Ha giorn		20	00	2002		2008	
								3	80,0	46%	73,2	83%	116,5	83%
									1,8	86%	2,4	84%	2,6	76%
									6,9	35%	0,0	-7%	-0,3	-3%
								1	5.9	-177%	-1.5	-13%	10.2	24%
(Gumiero et al. 2011)							2	2.8	33%	74.1	55%	129.1	65%	

2008

78%

77

NEW EXPERIMENTS




2009 and 2010 10 X of N-NO₃ (from 3 to 30 mg/l)

NITROGEN REMOVAL

Adding ten times of N-NO3 for 8 days, ones per season

The system keep almost the same performances but if you cut 50% of the trees/shrub biomass in the active zone the buffering capacity is going to reduce drastically.

CONCLUSIONS

- 1. 60-65% of nitrate removal already after one year from conversion
- 2. After 8 years the buffering capacity remains
- 3. Buffering activity occurs mainly within the first few meters
- 4. 10 time increase of nitrate input can still be removed in the buffer zone
- 5. 50% of tree removal decreases significantly nitrate removal

Thanks for lissening

