Hydroecological Processes and Functioning of Groundwater Dependent Ecosystems

GENESIS 7TH EC FP PROJECT ON GROUNDWATER AND DEPENDENT ECOSYSTEMS

Bjørn Kløve

Bioforsk-Norway University of Oulu-Finland

Background for the presentation

- Provide results of the project that are relevant for determining the interaction between groundwater and ecosystems on groundwater body scale.
- Provide information on how the project results be used by Member States in their <u>risk assessment,</u> <u>status assessment, monitoring activity</u> etcetera for the WFD.
- Interaction between groundwater and ecosystems in light of the WFD.
- Gaps in knowledge and potential GENESIS input based on discussions in the special session.

Content of presentation

- GWD and status assessment
- Risk assessment: drivers, pressures, state, impact, measures
 - Upscaling from individual ecosystems to groundwater body scale
- Groundwater and Ecosystems
 - presentation of some cases

Ecosystems: drivers, pressures, state, impacts

Groundwater status can be good even if ecosystems status poor if pollution from other sources

Ecosystems: drivers, pressures, state, impacts

Groundwater status is poor as groundwater status leads to considerable impact in ecosystems

Considerable impact (CIS No. 12)

- Valuable site is at risk
 - Ecologically important
 - e.g. Natura 2000
 - Socio-Economically important
 - tourism, housing, recreation etc.
- The impact is considerable

Relevant questions for status assessment

- Quality: Is concentration in groundwater body causing considerable damage to dependent ecosystems
- Quantity: Is the quantity of groundwater changed in such a way that it causes considerable damage to ecosystems

What information is needed to assess status?

- Status (Qualitative and quantitative)
 - contaminants and pollutants in groundwater
 - For NO₃-N the limit is rather high in Annex I if the system is pristine (e.g. Nordic or Alpine situation)
 - evidence exist from pollution and nitrogen removal required from most point sources with environmental permit
 - For pestisides, it seems as the concentration limit set for political reasons. Present limit are old detection limits. No evidence based on ecotoxicology.
 - Other contaminants/pollutants?
 - normally P limiting nutrient in aquatic systems, but the source is not usually groundwater
 - water quantity changes (extraction, drainage etc)
 - there is evidence that quantity changes has considerable impacts on ecosystems

What information is needed to assess risk?

- Knowledge on the groundwater system and the ecosystems such as a good conceptual model
- Knowledge on drivers, pressures, state and impacts
 - a <u>good</u> conceptual model of risk
- Knowledge on recharge and climate variability

Impact assessment

Term	Definition			
Driver	an anthropogenic activity that may have an environmental effect (e.g.			
	agriculture, industry)			
Pressure	the direct effect of the driver (for example, an effect that causes a change in			
	flow or a change in the water chemistry.			
State	the condition of the water body resulting from both natural and anthropogenic			
	factors (i.e. physical, chemical and biological characteristics)			
Impact	the environmental effect of the pressure (e.g. fish killed, ecosystem modified)			
Response	the measures taken to improve the state of the water body (e.g. restricting			
-	abstraction, limiting point source discharges, developing best practice			
	guidance for agriculture)			

Drivers at GW body scale (hydrology)

Hydrology

- •Irrigation and drainage
- •water extraction
- soil extratction and mining
- water construction
- •imperviouos structures (pavements)
- roads and tunnels
- •hydropower and regulation
- forestry and peat extractionclimate change
- •etc

Water quality (chemistry)

- •agriculture
- •forestry
- •mining
- urban areas and households
- •dumps
- •industry
- •etc

Pressures

Quantity

- •amount of recharge
- timing of rain/meltspatial distribution
- changes
- •water balance componenets
- •etc

Quality

- nutrient loading
- toxic comounds
- •erosion
- •etc

Ecosystem impacts?

unconfined and confined aquifers?

Vulnerability

- aquifer and catchment properties
- geology
- ecosystems
- land-use, water use, climate change
- the current state of ecosystem (most systems have been disturbed)
- groundwater/surfacewater/precititation portion

Spatial aspects

•GW discharge varies. Ecosystems that recieve little discharge can be more vulnerable to small changes if they dry out to extraction in the GW body. Several systems connected to roundwater bodies (surface water, springs, wetlands, terrestrial systems).

•Quality requirements might vary between systems and within a system.

•Operations in the discharge are with high exfiltraton can impact the GW body more than operations in areas with less flow (conductive layers near high exfiltration points).

Geology and vulnerability

A large uphill catchment or aquifer can provide much water making the system less vulnerable to pressures

Temporal aspect

- CIS No 3 "the abstraction of a certain volume of water may have no impact if pumped throughout the year, or be a significant pressure if taken out of a river only during the 2 summer months"
- Vulnerability should not be assessed for mean recharge but a smaller recharge based on assessment of climate variability patterns

Conceptual models to evaluate risk

• For the aquifer recharge-discharge and ecosystems

• For the driver-pressure-impact or driverpressure and evaluate impact (ecosystem risk)

Groundwater contact with ecosystems

- Aquifer contact (groundwater body contact)
- Groundwater (not aquifer) contact
- Seawater intrusion and groundwater
- Fractured rock
- Karstic systems
- etc

Some ecosystems depend on various water sources

Examples

- Switzerland (UNINE), Poland (AGH), Norway (Bioforsk), Finland (UOULU)
- GW-SW interaction
- Driver, pressure, state, impact, measures (Esker in Finland)

Wet forests and fen

Aquifers (Eskers) in Finland

Rokua aquifer: Recharge and discharge

Lakes GW-SW interaction

Conceptual model

Risk conceptual model

river	Pressure	State	Impact
orestry , peat arvesting, griculture	Drainage	Lower GW level in esker	Lake level decline, loss of property values, and ecosystem services
limate change	Increased droughts (P, ET, snow) and less recharge	Lower GW in esker	Lake level decline, loss of property values, and ecosystem services

Scientific evidence from monitoring showing the impact of forest ditches: •P-ET increased the last 20 years, but the groundwater table decreased •Modelling to study impact of ditches and climate variability (not yet ready)

Measures:

•Continue as before

•Restore dicthes (research must be carried out to demonstrate benefit)

•Prevent drainge at risk sites (research is needed to show

how ditching influence GW drainage)

•Expand protection of GW protection areas (research and discussions needed to iustify actions)

GENESIS CONTRIBUTION TO ECOSYSTEMS-GWD

- Review of groundwater dependent ecosystems
- Classification of systems
- GW-SW interaction
- Groundwater flowpaths
- Groundwater and ecosystem conceptual models
- Vulnerability
- Indicators
- Impact of land-use and climate change
- Providing examples and methodology from cases and research
- Concepts of ecosystems impacts and how to protect ecosystems (from a multidisciplinary group)

Groundwater dependent ecosystems. Part I: Hydroecological status and trends

Bjørn Kløve^{a,b,*}, Pertti Ala-aho^a, Guillaume Bertrand^c, Zuzana Boukalova^d, Ali Ertürk^e, Nico Goldscheider^f, Jari Ilmonen^a, Nusret Karakaya^g, Hans Kupfersberger^h, Jens Kværner^b, Angela Lundbergⁱ, Marta Mileusnić^j, Agnieszka Moszczynska^k, Timo Muotka^a, Elena Preda¹, Pekka Rossi^a, Dmytro Siergieievⁱ, Josef Šimek^d, Przemysław Wachniew^m, Vadineanu Angheluta¹, Anders Widerlundⁱ

*University of Oulu, Pertti kaiteran katu 1, 90014 Oulu, Finland

^bBioforsk – Norwegian Institute for Agricultural and Environmental Research, Sail and Environment Division, Frederik A. Dahls vei 20, N-1432 År, Norway

^cUniversity of Neuchätel, Rue Emile-Argand 11 - CP 158, CH - 2009 Neuchätel, Switzerland

^d GIS-Geoindustry s.r.o., Jindricha Plachty 16, 150 00 Praha 5, Czech Republic

^oIstanbul Technical University, 34469 Maslak, Istanbul, Turkey

⁴Karlar uhe Institute of Technology (KIT), Institute for Applied Geosciences, Department of Hydrogeology, Kaiserstr. 12, D-76131Karlaruhe, Germany ⁸Abant Izzet Bayaal University, 14280 Bolu, Turkey

^bJoanneum Research Forschungsgesellschaft mbH Elisabethsr. 16/II, A - 8010 Graz, Austria

- ¹Luleå University of Technology, SE-971 87 Luleå, Sweden
- ¹University of Zagreb; Pierottijeva 6, HR-10000 Zagreb, Croatia

^kUniversita Cattolica del SacroCuore, Via Emilia Parmense 84, 29100 Piacenza, Italy

- ¹University of Bucharest , Splaiul Independentei 91-95, 050095 Bucharest, Romania
- AGH University of Science and Technology, Mickiewicza, 30 30-059 Krakow, Poland

Summary

ecosystems are complex and depend on various water sources impacts on GW-body scale can cause changes in dependent ecosystems

- pollution e.g. NO3-N
- less water during droughts to ecosystems, impacts not well known groundwater interact in many ways with ecosystems
 - research still needed
- impacts on ecosystems depend on several issues
 - vulnerability
- conceptual models needed for main systems in each region/MS
 - groundwater-ecosystem interaction at the GW body scale including recharge and discharge
 - risk driver-pressure-status-impact (inlcuding sosio-economic systems)
 - variability and unceratinty in conceptual model, climate, scientific evidence
 - research is need on different systems to get correct and accurate models

research and discussion needed on the issue to provide input to policy