

Instream River Training Fundamentals and Practical Example

N. Werdenberg, Basler & Hofmann, Zollikofen Switzerland M. Mende, IUB Engineering, Bern Switzerland **C. Sindelar, IWHW, BOKU, Vienna Austria**

HydroEco 2015, Vienna, Austria

standard solution

- bank armoring = bank stability by means of riprap (expensive, not environment friendly)
- treatment of symptoms (instead of treating the cause)

...Actually the river's *flow* is causing erosion, not the river bank!

Definition of IRT:

«modification of flow with small submerged *instream-structures* (natural materials)

- Controlling erosion and deposition (channel stabilization)
- **Creating morphodynamic diversity** (habitats for fish etc.)
- Saving costs due to omittment of bank enhancement

Instream River Training: Monitoring channel stability

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Umwelt BAFU Office fédéral de l'environnement OFEV Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

- Fish migration establishing continuity (replacing vertical drops etc.)
- **Controlling erosion and deposition**(channel stabilization)
- Creating morphologic diversity (habitats for fish etc.)

Instream River Training – design rules

Design rules meandering ramps

- river width: $\leq 10 \text{ m}$
- substrate: $d_{90} \ge 140 \text{ mm}$
- ramp slope: $\leq 3\%$
- step spacing: 5-7 m
- design q: $q \le 10 \text{ m}^3/\text{sm}$

Sindelar (2011): *Design of a Meandering Ramp*, PhD Thesis, University of Technology Graz.

Fish Monitoring Große Tulln River (2012-2013)

Complete migratory continuity

Design rules micro groins

- relative submergence
- groin inclination
- groin spacing
- groin length
- required boulder size

Mende (2014): Naturnaher Uferschutz mit Lenkbuhnen - Grundlagen, Analytik und Bemessung, PhD Thesis, Technische Universität Braunschweig

Monitoring Taverna River (2012 - 2017)

Ongoing ecological monitoring

Instream River Training – stream barbs & rock vanes

Stream barbs & rock vanes

- Modification of flow by means of instream structures
- Only partly submerged, groin root level with top of bank
- transition to fully submerged state critical for banks
- Stream Barbs (USDA)
- Rock Vanes (Dave Rosgen)

Courtesy of: University of Minnesota St. Anthony Falls Laboratory (2014) 13)

Outlook - Research

- Interaction of micro groins with river morphodynamics
- Effect of vortical structures on fish and macro invertrebrate
- Hybrid modeling (combined physical and numerical modeling)
- Meandering ramps for higher specific discharges and smaller substrate

Outlook – Application

- Installation of micro groins in a sharp bend in Thur River, Switzerland
- Continuation of monitoring program at Taverna River, Switzerland

Thank you for your attention

Niels Werdenberg, Basler & Hofmann, Zollikofen Switzerland *Matthias Mende*, IUB Engineering, Bern Switzerland *Christine Sindelar*, IWHW, BOKU, Vienna Austria

