Real-time ecohydrology

Vienna, 16 April 2015

Klement Tockner

Walter Bertoldi, Cliff Dahm, Stefan Krause, Jörg Lewandowski

www.igb-berlin.de
Real-time meteorology (e.g., radar)

Fotos: E. MASTELLER
30 miles long Hexagenia swarm at Lake Erie (time intervals: 4 min)

Fotos: E. MASTELLER

Research for the future of our freshwaters
Causes for resource pulses
(cf Young et al. 2008. Ecology)

- Climatic and environmental causes
- Temporal accumulation and release
- Spatial accumulation and release
- Outbreak population dynamics

(Tisza River: *Palingenia longicauda*

(Photo: C. Elpers)
A 3-D perspective of river corridors: Conceptual model of the airscape along a river corridor

Primary air flow:
- down valley (cold)
- up valley (warm)

Secondary flow:
- up slope (warm)
- down slope (cold)

Unidirectional primary flows can be formed by diurnal meteorological cycles.

Micro-structure of air flow:
effects of complex roughness distribution (water, sediments, vegetation)

Complex internal boundary layers, wakes, and mixing layers.
Quantifying air-plankton: Using a combination of radar, lidar, and microwave-radiometer

(6 August 2014; source: TROPOS, Leipzig)
The future:

Interactive robots in experimental biology
(Krause et al. 2012. TREE)
Temporary streams: Pulsed systems

(Photos: Alisha Steward, Brisbane)
Temporary streams: Pulsed systems

(From: Steward et al. 2011. Aquatic Sciences, 2012. FEE)
Tagliamento: Release of material during (minor) first flush event

<table>
<thead>
<tr>
<th>Variable</th>
<th>Base Flow (n = 8)</th>
<th>Water Front (n = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS (mg/l)</td>
<td>1.43 ± 1.19</td>
<td>4053 ± 1193</td>
</tr>
<tr>
<td>PP (µg/l)</td>
<td>5 ± 3</td>
<td>570 ± 111</td>
</tr>
<tr>
<td>TDP (µg/l)</td>
<td>11 ± 7</td>
<td>121 ± 209</td>
</tr>
<tr>
<td>DOC (mg/l)</td>
<td>1.2 ± 0.3</td>
<td>3.9 ± 1.2</td>
</tr>
<tr>
<td>POC (mg/l)</td>
<td>0.3 ± 0.1</td>
<td>77.7 ± 6.7</td>
</tr>
<tr>
<td>DOC/POC</td>
<td>4.3 ± 1.7</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>NO$_3$-N (mg/l)</td>
<td>0.7 ± 0.0</td>
<td>2.1 ± 1.5</td>
</tr>
<tr>
<td>DON (mg/l)</td>
<td>0.2 ± 0.1</td>
<td>0.3 ± 0.2</td>
</tr>
</tbody>
</table>

(From: Larned et al. 2010. Freshwater Biology)
Las Conchas Fire – New Mexico (NM) 2011

• Was largest recorded NM fire
• High intensity forest fire

(New Mexico EPSCor)
Dissolved oxygen sags on the Rio Grande
(550 Bridge – August 16-22, 2011; discharge at Alameda & Central)

Dissolved Oxygen at Bernalillo Site and Rio Grande Discharge at USGS Alameda and Albuquerque Gages, 16 - 22 August 2011

NEW MEXICO EPSCOR
Lake Döllnsee (25 ha, max depth: 7.8 m)

3D-telemetry to trace fish in real time
(IGB, Department Biology & Ecology of Fishes)
One individual carp: Movement patterns during a 24 h cycle (From: C. Monk, IGB)
Integration high-temporal with high-spatial resolution data

Remote sensing

- deliver data of large areas in high spatial resolution,
- can help upscaling of local small-scale information,
- are faster than ground based technologies and
- allow measurements during time spans when remote areas are not accessible

(Photos: Terreno & Jörg Lewandowski)
Study site: Lake Arendsee

- Max. depth 49 m, mean depth 29 m, surface area 5.13 km2
- Highly eutrophic (total phosphorus approx. 200 µg P L$^{-1}$)
- Located in north-eastern Germany

Airborne thermal infrared (TIR) measurements

- TIR data collected on 22 March 2012 from 10:59 to 11:03 h
- Airborne mission with a Cessna 207T
- TIR camera VarioCam HR, head 600, 640 x 480 pixels, f 30 mm
- Installed on a stabilized platform GSM 3000 together with an inertial navigation system (IGI Aerocontrol)
- Very low lens distortion and the stabilized platform made it possible to mosaic the data rapidly with a common imaging program (Gimp)
Airborne thermal infrared (TIR) to detect LGD

(LGD = lacustrine groundwater discharge)

Determination of groundwater-borne phosphorus loads

Usually separate determination of seepage volume and nutrient concentration in the approaching groundwater (multiplication)

- **Groundwater observation well**
- **Near-surface piezometers**
- **Private groundwater extraction well**

Phosphorus concentration
- 0 - 100 μg l⁻¹
- 100 - 200 μg l⁻¹
- 200 - 500 μg l⁻¹
- 500 - 1000 μg l⁻¹
- > 1000 μg l⁻¹

Groundwater exfiltration rate
- 0 - 20 l m⁻² d⁻¹
- 20 - 40 l m⁻² d⁻¹
- 40 - 60 l m⁻² d⁻¹
- 60 - 80 l m⁻² d⁻¹
- > 80 l m⁻² d⁻¹

<table>
<thead>
<tr>
<th>Input path</th>
<th>Water [10⁶ m³ yr⁻¹]</th>
<th>P Input [kg yr⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater</td>
<td>1.27</td>
<td>1,000</td>
</tr>
<tr>
<td>Wet and dry deposition</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>Precipitation</td>
<td>3.02</td>
<td>—</td>
</tr>
<tr>
<td>Surface inflow</td>
<td>2.39</td>
<td>180</td>
</tr>
<tr>
<td>Water flow</td>
<td>—</td>
<td>200</td>
</tr>
</tbody>
</table>

Subsurface catchment of Lake Arendsee

Surface inflow (% of the overall surface inflow in March 2011)
Monitoring bio-geomorphic processes in real time

(Photo: W. Bertoldi, Univ. Trento)
Effects of a seasonal flow pulse (from Bertoldi et al.)

Is it possible to predict eco-geomorphological effects from flood magnitude?

RI 2 yrs = 280 cm

27 April 2013 – 14.00

NO WOOD!
Effects of a seasonal flow pulse

28 April 2013 – 07.00
Effects of a seasonal flow pulse

28 April 2013 – 08.00
Effects of a seasonal flow pulse

28 April 2013 – 09.00
Effects of a seasonal flow pulse

28 April 2013 – 10.00
Effects of a seasonal flow pulse

28 April 2013 – 11.00
Effects of a seasonal flow pulse

28 April 2013 – 12.00

[Graph showing hydrometric level over time]
Effects of a seasonal flow pulse

28 April 2013 – 13.00
Effects of a seasonal flow pulse

28 April 2013 – 14.00
Effects of a seasonal flow pulse

28 April 2013 – 15.00
Effects of a seasonal flow pulse

28 April 2013 – 16.00
Effects of a seasonal flow pulse

28 April 2013 – 17.00
Effects of a seasonal flow pulse

29 April 2013 – 07.00
Wood erosion and deposition

Up to 40% of the trees were deposited on the nearest downstream bar

- position of island edge on 18/12/2009

(A) 18/12/2009 16.00
(B) 26/12/2009 16.00
(C) 15/01/2010 16.00
Wood erosion and deposition

Most wood deposited as single logs during the decreasing phase of the flood
Wood erosion and deposition

Recent improvements in wood monitoring

→ McVicar et al. 2009, 2012 → video tracking
→ Fixed monitoring section on the Ain River (H. Piègay, CNRS Lyon)

→ Possibility to link wood production and deposition
→ Monitoring when and where wood is deposited

Bertoldi et al. 2013 Wood recruitment and retention: the fate of eroded trees on a braided river explored using a combination of field and remotely-sensed data sources. Geomorphology, 180-181, 146-155
Real-time ecohydrology

Improve the capability to quantify the transfer and transformation of organisms and material

Detect thresholds, monitor rapid alterations, and provide early warning signals

Understand the effects of critical periods (e.g. pulse events)

Link hydrogeomorphic, ecological, biological, and social processes across spatio-temporal scales
Thank you for your attention!

Vienna, 16 April 2015

www.igb-berlin.de