HydroPredict'2012, Vienna, 24-27 September 2012

A new concept for identifying a scale of potential predictive capability of spatially distributed models

Jens Christian Refsgaard

Geological Survey of Denmark and Greenland Ministry of Climate and Energy

Outline

- Problem How good are distributed models and at which spatial scale?
- Representative elementary scale (RES) concept
- Example 1: Precipitation uncertainty
- Example 2: Geological uncertainty nitrate modelling
- Conclusions

Sophisticated model codes

• How good are our models?

G E U S

What is constraining model performance at small scales?

- Process description/model structure not adequate at small scales
 - → Model codes exist (but can be improved)
- Bias in model structure or model parameters
 - → Major problem
 - → Can be compensated through calibration
 - \rightarrow problems for predictions beyound calibration conditions
 - \rightarrow problems for scales smaller than calibration scale
- Lack of data to resolve small scale heterogeneity

This presentation

- Climate data, particularly precipitation
- Soil and vegetation data
- Geology
- o Etc.

Scale analysis

- Representative Elementary Scale (RES)

RES = The smallest spatial scale at which a model potentially has predictive capability

- Describe local scale heterogeneity geostatistically e.g. by use of probability density functions and semi-variograms
- Stochastic analyses of local scale characteristics
 - Generate n realisations → n model runs
 - Calculate the effects of the differences between the n models e.g characterised by the coefficient of variation among the results from the n model runs
 - Analyse results for aggregation of results to different spatial scales

Example 1: Precipitation uncertainty

He et al. (WRR, W09526, 2011)

- Statistical model for precipitation uncertainty
 - Weather radar + 31 raingage stations
 - Uncertainty at 2 km grid, daily values
 - Generate 200 realisations of precipitation fields
- Propagate precipitation uncertainty through a hydrological model
 - Coupled groundwater-surface water (MIKE SHE)
 - 3,500 km² Skjern catchment Denmark (HOBE hydrological observatory)
- Analyse relation between spatial scale and uncertainty as differences (coefficients of variation) between 200 model runs

Scale analysis

Uncertainty at 148 subcatchments with areas ranging between 3 and 49 km²

Example 2: Nitrate reduction in saturated zone

NiCA project – <u>www.nitrat.dk</u>

2/3 of the nitrate leaching from the root zone is reduced/disappears in the subsurface when flow lines cross below the redox interface

Summary of problem

- Nitrate load to surface water must be reduced by ~50%
- 2/3 of the nitrate leaching from the root zone is reduced (disappears) in the subsurface when flow lines cross below the redox interface
- Uniform regulations (identical for all agricultural fields) to reduce nitrate leaching → efficiency of only 1/3
- If we knew the areas where subsurface reduction takes place we could design cost effective measures to reduce nitrate load
- Due to unknown geological heterogeneity
 - we do not know where subsurface reduction occurs
 - we do not know at which spatial scale our models have the potential to provide reliable predictions (without calibration)

Mapping of subsurface properties

MiniSkyTEM – a new geophysical instrument

SkyTEM

- Transient Electromagnetic System (TEM)
- Airborne

MiniSkyTEM (further developed in NICA)

- 2000 line-km survey in a week
- Provide information on resistivity of the upper about 100 m of the subsurface
- Spatial resolution in top layers:
 - Vertically: 1-2 m
 - Horisontally: 30-50 m

SkyTEM measurement principles

www.geus.dk

Geophysical mapping - SkyTEM

Stochastic geological realisations

(A)

 TProGS (Carle et al., 1998)

 Conditioned by borehole data

 Soft conditioned by geophysical data

(B)

www.geus.dk

Simulation of nitrate reduction in subsurface

- particle tracking model
- particles crossing
 below the redox interface into
 reduced zone →
 nitrate reduction

Overall methodology

Uncertainty at different aggregation scales

GEOLOGICAL SURVEY OF DENMA

Step 1: Conceptualise large scale geological structures

Conceptulization of large scale geological structure

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Step 2: Utilise local geophysical and well log data to construct stochastic geological model and condition realisations

SkyTEM data

Well log data

Step 3: Stochastic simulations of geological heterogeneity

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Step 4: Hydrological modellin – particle tracking

For each geological realisation

- Calibrate flow model
- Particle tracking → nitrate reduction when passing redox-interface

Step 5: Spatial distribution of nitrate reduction

Conceptulization of large scale geological structure SkyTEM data Well log data Stochastic simulations of geological heterogeneit Hydrological modelling - particle tracking Spatial distribution of nitrate reduction Uncertainty at different aggregation scales Acceptab

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Conceptulization of large scale geological structure **GEUS Step 6: Uncertainty at** SkyTEM data Well log data different aggregation scales Stochastic simulations of geological heterogeneit Hydrological modelling - particle tracking Uncertainty on N-reduction Spatial distribution of nitrate reduction Uncertainty at different aggregation scales Uncertainty Acceptable Acceptat uncertainty DES Scale RES

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Conclusions

- Need to assess at which scales we should consider trusting our spatially distributed models
- Predictive capability of distributed model constrained by the spatial resolution of key data
- Representative Elementary Scale (RES)
 - Modification of Representative Elementary Area concept (Wood et al., 1988; Beven, 1995)
 - A measure of the largest scale at which a model potentially has predictive capability
 - No unique RES value, but site and application specific

Further information

Example 1: He X, Refsgaard JC, Sonnenborg TO, Vejen F, Jensen KH (2011) Statistical analysis of the impact of radar rainfall uncertainties on water resources modelling. Water Resources Research, 47, WR09526 http://www.agu.org/pubs/crossref/2011/2011WR010670.shtml

Example 2: NICA - Nitrate reduction in geologically heterogeneous catchments <u>http://nitrat.dk</u>

jcr@geus.dk