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EMERGENCY MANAGEMENT UNDER UNCERTAINTYEMERGENCY MANAGEMENT UNDER UNCERTAINTYEMERGENCY MANAGEMENT UNDER UNCERTAINTYEMERGENCY MANAGEMENT UNDER UNCERTAINTY

Frequently, engineers and decision makers face the problem of 
taking important decisions, such as preventive releases of water 
from a reservoir to avoid over-filling or evacuating an area 
threaten by an incoming flood wave, without perfect knowledge 
of what will actually happen. 

These decisions may have serious consequences in terms of 
damages and casualties, which requires the decision makers to 
use all the information they can gather in order to increase their 
robustness, the reliability and the effectiveness.
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PREDICTIVE UNCERTAINTYPREDICTIVE UNCERTAINTYPREDICTIVE UNCERTAINTYPREDICTIVE UNCERTAINTY

Although well known in Statistics and Decision Theory, it is only 

in the last two decades that the concepts of 

PREDICTIVE UNCERTAINTY

have emerged in hydrology and water resources together with 

the appropriate techniques allowing assessment and 

incorporation of the uncertainty information into the decision 

making process.
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PLANNING UNDER UNCERTAINTYPLANNING UNDER UNCERTAINTYPLANNING UNDER UNCERTAINTYPLANNING UNDER UNCERTAINTY

Traditionally, planning decisions are taken on the basis of 

scenarios assumed for the future either as reasonable 

subjective hypotheses or as the result of some modeling 

exercise. 

For instance climate change effects have been estimated using 

a series of General Circulation Models, and although their 

reliability is known to be rather low, adaptation measures are 

usually planned taking one or the other of the anticipated 

scenarios.
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FROM PLANNING TO  MANAGEMENT UNDER FROM PLANNING TO  MANAGEMENT UNDER FROM PLANNING TO  MANAGEMENT UNDER FROM PLANNING TO  MANAGEMENT UNDER 
UNCERTAINTYUNCERTAINTYUNCERTAINTYUNCERTAINTY

Once operational strategies and plans have being laid, and 

structural as well as non-structural measures set in place, water 

resources and flood emergency management will result from the 

combination of pre-laid plans with shorter terms scenarios or 

predictions, based on some model forecasts.

Today, given the vast availability hydrological and hydraulic 

models, most of planning and management decisions are based 

on models forecasts. 
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MODEL FORECASTS AND UNCERTAINTYMODEL FORECASTS AND UNCERTAINTYMODEL FORECASTS AND UNCERTAINTYMODEL FORECASTS AND UNCERTAINTY

Unfortunately, model forecasts, although known to be imperfect, 

are traditionally used into the decision making processes as 

“deterministic” quantities without being associated to some 

cautious measure of uncertainty. 

By doing so, decision makers, although aware that model 

forecasts are not perfectly representing future outcomes, are de 

facto assuming that the  values of discharge, volume, water 

level, etc. will coincide with what will actually occur. 
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A decision is activated if the river discharge is higher than a pre-
set threshold. A model is available. If the decision is taken using 
the model there is a high likelihood of taking the wrong decision.  .  .  .  

DECISION

WRONG =  12/17

RIGHT =       5/17

The threshold The threshold The threshold The threshold 
exampleexampleexampleexample
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MODEL FORECASTS AS VIRTUAL REALITYMODEL FORECASTS AS VIRTUAL REALITYMODEL FORECASTS AS VIRTUAL REALITYMODEL FORECASTS AS VIRTUAL REALITY

The example allows to underline that a model forecast is not 

“reality”, but rather “virtual reality”, and as such should never be 

directly compared to real quantities such as thresholds, set on 

the basis of measured (real) quantities. 

As a corollary of the previous consideration, one must realize 

that damages as well as benefits resulting from a management 

decisions only occur when the actual water level (reality) not the 

forecasted one (virtual reality) overtops the threshold.
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RATIONAL DECISION MAKINGRATIONAL DECISION MAKINGRATIONAL DECISION MAKINGRATIONAL DECISION MAKING

Rational decision  making must then be based on the expected 
value of an utility (the Bayesian utility) function expressing the 
propensity of the decision maker at risk.

with 

or  simply 
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A MEASURE OF PREDICTIVE UNCERTAINTYA MEASURE OF PREDICTIVE UNCERTAINTYA MEASURE OF PREDICTIVE UNCERTAINTYA MEASURE OF PREDICTIVE UNCERTAINTY

Unfortunately, for time              the density                is either 

unknown or is so flat (climatological distribution) that adds no or 

very little information.  

Alternatively, what can be done is to assess the conditional 

distribution of the future outcome, based  on all the available 

information, which is generally contained in one or more model 

forecasts.

This is what is called “a measure of predictive uncertainty”                   
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Two gauges are available:
- the first one is very accurate
- the second one is coarse

First Problem 
Assess the quality of the 
coarse instrument using the 
accurate one.

It can be done via Linear 
Regression

VALIDATION UNCERTAINY
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BUT
At a certain point in time the 
accurate instrument breaks.

Second Problem 
Assess the expected true but 
unknown value using the 
coarse instrument, and its 
estimation uncertainty.
It can still be done via Linear 
Regression but the other way 
round

PREDICTIVE UNCERTAINY
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Two gauges are available:
- Both gauges are affected by 
measurement errors

First and 1/2 Problem 
Assess the quality of the 
coarse instrument using the 
accurate one.

It cannot be solved with linear 
regression. One must solve it 
using data assimilation 
techniques such as Bayesian 
combination and or Filters 
(KF, EnKF, Particle Filter, 
etc.)

DATA ASSIMILATION
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Validation vs Predictive Uncertainty

Validation Uncertainty

Uncertainty of model

predictions knowing

(conditional on) the observations

Predictive Uncertainty

Uncertainty of future occurrences
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Predictive Uncertainty : the definition

The probability mentioned in the previous question descends

from a mixture of prior belief and objective assessment of

the situation. Our state of knowledge is always a mixture of

“what we know”, or better “what we believe we know” (in the

sense that we may be wrong), which is a “subjective state of

mind” and what we “learn from observations” (which includes

data and models), which can be seen as “objective”.

A definition of Predictive Uncertainty can be the following:

Predictive uncertainty is the expression of our assessment of

the probability of occurrence of a future (real) event

conditional upon all the knowledge available up to the present

and the information we were able to acquire through a

learning inferential process.



S

SI

I

H

HYDROPREDICT 2012 – Vienna (Austria) - September 24 -27, 2012 16

Validation vs Predictive Uncertainty
Therefore,  we must clearly distinguish between two types of 

uncertainty, namely:

Validation Uncertainty  and Predictive Uncertainty.

Validation Uncertainty represents how well our model(s) 

reproduce the observations and is affected by all sorts of errors 

(measurement, model, parameters, initial and boundary conditions).

Predictive Uncertainty represents the probability of the 

occurrence of a future event given (conditional to)  the 

observations and the model(s) forecasts, where the model 

predictions are taken as known and not uncertain quantities. 
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Validation vs Predictive Uncertainty

Meteorological Ensembles

are a measure of Validation

Uncertainty,  while

Climatological Distributions

or 

Extreme Value Distributions 

are measures of Predictive Uncertainty, although non conditional 

on real time information. 
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The need for Assessing Predictive Uncertainty
The Reservoir Management Case

In the Reservoir Management Problem it 

is easy to show that  Deterministic 

Forecasts lead to wrong estimates of 

losses. 

In this simple example losses occur if the 

reservoir is overtopped. If the 

Deterministic Forecast reaches the top 

level of the reservoir the estimated 

losses are equal to zero.

Deterministic Forecast

Losses = 0Expected Losses ≠ 0

Probabilistic Forecast

Damages

Volume

PU as pdf

This is obviously wrong because the uncertainty in 

the forecast implies that the “expected value” of 

losses is not null. The “expected value” of losses 

can be estimated if and when an assessment of 

Predictive Uncertainty will be available.
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Operational use of Predictive Uncertainty

Decision Theory teaches us how  to make use of Predictive Uncertainty.
When one needs to take decisions under uncertainty he must:

1. Describe the uncertainty, namely by assess PU in terms of a 
probability distribution function conditional on latest information;

2. Define an utility function, from a description of the decision maker 
propensity towards risk to more complex loss/ benefit functions 
involving actual costs;

3. Marginalise the effect of uncertainty by integrating the product of the 
probability times the utility function: the expected value of the utility 
function.

4. Use the resulting expected value within the decision making process 
by trade-off analysis or by optimization.
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Most used approaches to PU assessment

1) The Hydrological Uncertainty Processors
Krzysztofowicz, 1999; Krzysztofowicz and Kelly, 2000

2)The Quantile Regression 
Koenker and Basset, 1978; Koenker, 2005

3) The Bayesian Model Averaging 
Raftery et al., 2003

4) The Model Conditional Processor 
Todini, 2008.
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1) The Hydrological Uncertainty Processors
Krzysztofowicz, 1999; Krzysztofowicz and Kelly, 2000

After converting the observations and the model forecasts available for 
the historical period into the Normal space, HUP combines the prior 
predictive uncertainty (in this case derived as an AR1 model) with a 
Likelihood function in order to obtain the posterior density of the 
predictand conditional to the model forecasts via a Bayesian 
combination approach.
The result is: 
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2)The Quantile Regression 
Koenker and Basset, 1978; Koenker, 2005

Instead of estimating the full density, QR estimates one by one the 
quantiles of the predictive density using linear or non-linear models by 
appropriately weighting the observations. Parameters are estimated by 
means of Linear Programming.

Limitations: the large number of parameters to be estimated (at least 2 
per quantile).
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3) The Bayesian Model Averaging 
Raftery et al., 2003

Bayesian Model Averaging (BMA) is not exactly estimating what was 

defined as Predictive Uncertainty, namely the conditional probability 

density, the ratio between the joint and the marginal densities,

But rather related quantity based on Bayesian mixture distributions: 
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4) The Model Conditional Processor
Todini, 2008

After converting the observations and the models into the Normal space 

using the NQT, builds the joint density (a multi-Normal density) and 

analytically derives the conditional density following the definition:

The final result is equivalent to a linear regression in the Normal space
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The use of Predictive Uncertainty The threshold The threshold The threshold The threshold 
exampleexampleexampleexample

DECISION

WRONG =  12/17

RIGHT =       5/17

The use of the expected conditional value noticeably improves 
decision reliability
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The use of Predictive Uncertainty The threshold The threshold The threshold The threshold 
exampleexampleexampleexample

DECISION

WRONG =   4/17

RIGHT =       13/17

The use of the expected conditional value noticeably improves 
decision reliability
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The full use of Predictive Uncertainty
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The full use of Predictive Uncertainty
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The use of Predictive Uncertainty

To improve management of the Lake Como in Italy
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Managing the Lake Como by using Predictive 
Uncertainty
Results obtained by simulating 15 years of operations from January 1st, 

1981 to December 31st, 1995

Water Level                         Number of Days

Historical                  Optimized

<-40  cm                          214                           0

≥ 120 cm                          133                         54

≥ 140 cm                            71                         32

≥ 173 cm                            35                          11

Water Deficit  890.27 106 m3 694.49 106 m3

Energy Production  increased by 3%
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How to reconcile the different hydrological 
models: the multi-model approach

The  Uncertainty Processors also allow to sinthesize several models and 

ensemble forecasts
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Gridded hourly precipitation and

temperature data

Observed hourly discharge at 

Eldon

01/10/1995 30/09/200231/05/1997 31/01/1998

ANN:        

CALIBRATION

VERIFI

C.

VALIDATION

01/10/1995 30/09/200231/05/1997 01/05/2000

MCP:                                                      VALIDATION                            

CALIBRATION

BARON FORK RIVER AT ELDON, OK, USA

Available data, provided by the NOAA’s National Weather Service, within the 

DMIP 2 Project:

TOPKAPI MODEL
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1 MODEL:

TOPKAPI

VS

2 MODELS:

TETIS + 

TOPKAPI 

Exceeding Probability TOPKAPI

Exceeding Probability 2 MODELS

90% Uncertainty Band 2 MODELS

PU Expected Value 2 MODELS

90% Uncertainty Band TOPKAPI

PU Expected Value TOPKAPI

Observed Discharge

Observed threshold exceedance

Exceeding Probability 3 MODELS

90% Uncertainty Band 3 MODELS

PU Expected Value 3 MODELS

VS

3 MODELS:

TETIS + 

TOPKAPI + ANN
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THE MULTITHE MULTITHE MULTITHE MULTI----TEMPORAL APPROACHTEMPORAL APPROACHTEMPORAL APPROACHTEMPORAL APPROACH

The multi-temporal approach can give an answer to the following 
important questions:

What is the probability of an event in the next 24 
hours?

At what time it will most likely occur?
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Within 24 h
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THE MULTITHE MULTITHE MULTITHE MULTI----TEMPORAL APPROACHTEMPORAL APPROACHTEMPORAL APPROACHTEMPORAL APPROACH



S

SI

I

H

HYDROPREDICT 2012 – Vienna (Austria) - September 24 -27, 2012

Exact Exceedance time (T*) 

probability

36
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Which is the expected  

time of  exceedance 

within the next 24 

hours?
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Forecasted hourly levels:  

forecast lead time 24 h.
Observed hourly levels

01/05/2000 20/01/200930/06/2004

MCP:       CALIBRATION                                          

VALIDATION

PO at PONTELAGOSCURO and PONTE SPESSA

Available data, provided by the Civil Protection of Emilia Romagna Region, Italy:
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Exact 

Exceedance

Time Probability

Cumulative 

Exceedance 

Probability

90% Uncertainty Band 

with BASIC 

APPROACH (TNDs)

Pontelagoscuro Station (36 h in advance)

P
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*
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Deterministic 

Forecast

P
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90% Uncertainty 

Band with MULTI-

TEMPORAL 

APPROACH
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Exact Exceedance 

Time Probability

Cumulative 

Exceedance 

Probability

Ponte Spessa Station (24 h in advance)

P
(T
*
)

P
(T
*
)

90% Uncertainty 

Band with BASIC 

APPROACH 

(TNDs)

Deterministic 

Forecast
90% Uncertainty 

Band with MULTI-

TEMPORAL 

APPROACH
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• The new probabilistic approaches make use of the forecasting models

as incremental pieces of information aimed at allowing decision makers to

reliably take correct decisions also using not one but several hydrological

models.

• These approaches, and in particular the use of Predictive Uncertainty

Processors have produced several successful operational real time flood

forecasting and management systems.

• There is still much work to be done in order to guarantee that the

produced predictive density is the correct one.

CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS
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Thank you

for your attention

ezio.todini@unibo.it
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