ENSEMBLE MODEL TO RECONSTRUCT PALAEOCLIMATE AND PREDICT INDIA'S GROUNDWATER CHALLENGE AND THE WAY FORWARD

PROF. P. S. DATTA

Ex-Project Director (NRL) & Ex-Principal Scientist (Hydrology) IARI, New Delhi, India E-mail: psdatta1950@gmail.com

3rd International Interdisciplinary Conference on Predictions for Hydrology, Ecology and Water Resources Management: Water Resources and Changing Global Environment (HydroPredict 2012) 24-27 September 2012, Vienna, Austria

A single template of GW management is difficult from limited knowledge of GW Systems, demand & use in socio-economic context. Datta et al (2001); Datta (2005, 2011); (Minor Irrigation Census, Govt of India)

SOME UNDENIABLE FACTS ON CLIMATE

Neogene (23-6 My): Climate in SE Asia, humid tropics & subtropics was same, with decline in Temperature & insignificant change in CO₂

(1 My - Present): Different response of tropics & northern extra-tropics by Interglacial periods of 100,000 yr intervals.

Hot current state, stable for past 10,000 yr The Region was subjected to different climatic phases ~ 4000 to 1,000,000 yrs back. Source: Cai et al (2006); Chiang (2009); Anchukaitis et al (2010)

MATTER OF CONCERN

How to overcome the uncertainties in climate change to predict the future of India's GW?

ENSEMBLE MODEL PROVIDES INSIGHT

Observational Records (1901-2010)

Reconstructed Pre-monsoon Anomalies Using Tree-ring Chronology Network

meso-scale influences in lower atmosphere & monsoon circulation.

GW exhibit reasonable correspondence with rainfall δ^{18} O. Source: Datta et al (1996, 1997, 2006); Gupta & Deshpande (2005)

ISOTOPIC CHARACTERIZATION OF GW IN INDIA δ¹⁸O (%) - 14 -12 -10 **Recharge from both** (Western Ghats & Deccan Plateau) > -2‰ -4‰ to -2‰ (SE Coast Plains) Belgaum $- I/WMWL: \delta^2 D = 8 \delta^{18} O + 10$ -20 nelueli WAMWL: $\delta^2 D = 7.4 \delta^{18} O + 3.7$ Na Allahabad -5% to -1%AGWL: $\delta^2 D = 4.8\delta^{18}O + 16.5$ c-A% (NW & Gangetic Plains) and ¹⁸O enriched (W&S) -40 省 evaporated rainwater. -60 with fresh water. 00 DELHI Kakinada HARYANA Jabalour 🗶 Sagar 50 100

(Source: URL: http://www.prl.res.in/%7Ewebprl/web/announce/ind-gw.pdf)

³H age <50 yr & ¹⁴C age 2,000-22,000 yr BP suggest GW Recharge from both modern rain & past relatively humid climate. ¹⁸O depleted (NW & IGP) **Intermixing of saline GW**

GW Recharge (%) from Rainfall in NW India

Av. GW Recharge: <7% 0.66 km³/yr = 660 MCM

Increase in temperature & snow-melt run-off may increase recharge in IGP.

Decline in Himalaya glaciers retreat since 1970 and higher variability & declining rainfall trends in monsoon months may decrease recharge.

Year

STATUS OF GW POLLUTION IN INDIA

Arsenic Contamination in Wells in India (Apr 2012)

BIHAR

UTTAR PRADESH

National Average

40.00

30.00

20.00

10.00

0.00

WEST BENGAL

ASSAM

Percentage of Wells

More than half of India's wells are moderately to highly polluted. East & South GW: As & Fe North and West GW: F Orissa, Jharkhand, Tamil Nadu, Kerala, Uttarakhand, Bihar & NE-States GW: High Fe Maharashtra & Karnataka GW: High NO₃

Source: Real Time News (9th Sep, 2012)

High Nitrate (mg/l) and High Chloride (mg/l) Plumes Dynamics in Groundwater of Delhi Region

Groundwater is moderately to highly contaminated, with lateral extension of plumes towards the central urban parts along specific flowpaths, induced by withdrawal not in balance with recharge. Datta & Tyagi (2006)

CONCEPTUAL MODEL TO ASSESS GW RECHARGE AVAILABILITY

Rainfall 'R' falling in 'T' packets of Recharge quantity 'h = (1-m-s)H/N' At each time step T = R/h = NR/(1-m-s)H

The water after complete mixing in layer *n* leaves this sublayer and enters layer *n*+1 with Vol. *v*[*n*+1].

Net Recharge (Re) to a layer =

(Input to the layer) + (Mixing in free volume) – (Output from the layer) – (retention inside the volume) S_(T+1) = (S_T+BRF X BRV – BDF X BDV)

Estimated Recharge (Re x Area) : 14.8 ± 2.5 km³/yr in Punjab, Haryana, Rajasthan & WUP (including Delhi). Matches with CGWB estimated GW withdrawal : 13.2km³/yr Dynamic component of GW in the WT fluctuation zone is replenished annually, and has been assessed as 432 bcm.

TO WRAP UP

Climate Effects on Tropical Water Regimes – Harder to predict

Impact of Climate Change on India's GW is not apparent. Basic scientific information is scarce.

Presented evidences suggest:

In the early quaternary North-West India was well watered.

LGM (30000-12000 yrs BP): Pluvial climate preserved GW in deep aquifers and in shallow aquifers by interaction with lakes and rivers & by recharge. During last 50 years, temperature & rainfall show declining trend or not significant change. Past decades & decades little rainwater could recharge GW

CONCLUDING REMARKS

For GW recharge to be a major response to Climate resilient GW management, it is desirable to:

- Monitor: Variability in GW recharge & pollution dynamics.
- Revise: All such estimates time to time , in relation to the changes in land/water use & reconsider.
- Expand: Geographical coverage of paleowaters, vertical stratification, lateral non-homogeneity, GW flow-pathways of intermixing, from high-resolution data on paleoclimate records from tree rings, ice-cores and lake-sediments.
- Identify: Pollution sources and strategies for containment of pollution spreading from known sources.
- **Develop:** Vulnerability maps of GW contaminants levels.
- **Delineate:** Potential GW recharge & protection zones.

ADAPTATION STRATEGIES

- Evolve: Integrated GW management strategy, considering different timescales of GW recharge.
- Assess: Past successes & failures and adjust policies according to local condition.
- Conduct: Studies on competition among water users (private and public); inter-sectoral (irrigated agriculture and urban water supplies).
- Examine: People's adaptive strategies & the policy implications, etc., when GW scarcity is faced.
- Direct: Resources & energies to promote GW recharge in hotspot areas, to reduce GHG emissions from pumping and to restore the GW resilience from climate.

