

Predicting ecological responses to a changing climate

Fiona Dyer, Paloma Lucena-Moya, Sondoss El-Sawah, Evan Harrison, Trefor Reynoldson, Tony Jakeman, Barry Croke

Hydropredict, Vienna, 2012

Institute for Applied Ecology Ecological Solutions for a Healthy Environment

Australian National University

An *Introduction* to lian and New Zealand Guidelines Fresh and Marine Water Quality

Natural Resources and Water Managing Queensland's natural resources

Water quality guidelines for recycled water schemes

Objectives

- To develop a linked modeling framework:
 - combining hydrological, water quality and ecological response models
 - to predict the response of these complex systems under different climate and adaptation scenarios
- Focus
 - Adverse biological effects
 - Informing adaptation initiatives

Bayesian meta-modelling approach

Ecological Endpoints

- Macroinvertebrates
 - Indicators of River Health
 - % "Sensitive" taxa (%EPT)
 - Community richness
 - Community structure

Selecting drivers

- Macroinvertebrate data
 - 320 sites; 20 years
- 128 predictor variables (drivers)
 - Hydrology, climate, landuse, geology, water quality & habitat
- Remove correlated drivers (>0.7)
- Selection methods
 - EPT/Richness: Boosted Regression Trees
 - Community: Multivariate analysis (BEST)

Selecting Drivers

EPT (% explained BRT* model 46.75)	Relative Importance (%)	Richness (% explained BRT* model 36.14)	Relative Importance (%)	Whole community	
CV (year)	10.37 (of 46.75)	Altitude (m)	10.55 (of 36.14)	CV (Month)	ρ= 0.455 [#] (including these 7 variables)
Urban (%)	9.23	Mean flow (year)	7.97	CV (Year)	
Days 10 th %ile (year)	7.96	рН	7.77	Local Catchment Erosion	
% Cover of riparian zone < 10m	6.58	% Cover Rip grass, ferns and sedges	7.27	EC (mS/cm)	
EC (mS/cm)	6.40	Catchment area	6.75	Volcanic sediment	17 variables
CV (90 days)	6.18	EC (mS/cm)	6.32	Sandstone	
		Turbidity (NTU)	6.21	Urban (%)	
Hydrology Water Qu	ality Habi	tat Land use	Geology		

*BRT (Boosted Regression Trees)

BEST test (based on rank correlation (Rho, ρ)

· +

Is there a threshold response to those drivers?

Thresholds?

- Threshold values comparable
 - Different methods
 - Different end-points

Conclusions

- Focussing on ecological response
 - Defines model structure

Differs depending on definition of ecological response

- Identifying ecological relevant thresholds
 Different techniques similar thresholds
- Identifies where to invest modelling effort
 - Climate / flow / water quality
 - Uncertainty management

