Hydro Predict'2012

Distributed Adaptive Capacity Building to Reduce Climate Change Impacts on Water Supply Systems

> Ching-Pin Tung, Tzu-Ming Liu, Wan-Yu Lien, Chia-Yu Lin, Wei-Ting Liao

Bioenvironmental Systems Engineering National Taiwan University

Sustainable Development Laboratory

Location-Taiwan

Changes in Climate in Taiwan

- Main Island of Taiwan has area of 36,000 km².
- Temperature has been increased 0.7~1.4 °C in the past 100 years.
- Annual precipitation does not change significantly.
- However, difference between dry (winter and spring) and wet season (summer) increases significantly.
- Besides, rainfall intensity become stronger and dry day lasts longer.

More Frequent and Intensive Extreme Events

Flooding in Taipei Sept. 17, 2001 Return Period of Rainfall more than 150 years

Drought in Taipei Area Spring, 2002

Shihmen Reservoir

Sustainable Development Laboratory

Sustainable Development Laboratory

High Flow with High Turbidity, but Low Water Supply

Typhoon Morakot August 7-8, 2009

ChiaXian Weir (2009/8/18, ten days after typhoon)

Sustainable Development Laboratory

Typhoon Morakot

- The Typhoon Morakot intruded Taiwan during 7th to 8th in 2009 and brought about 2,700 mm total rainfall.
 - The annual rainfall in Taiwan is about 2,550mm.

http://www.boston.com/bigpicture/2009/08/typhoon_morakot.htm

Shiao Lin village, Taiwan, drastic changes after typhoon Morakot.

http://img200.imageshack.us/img200/961/shiaolinaftermorakot.jpg

- Climate change may cause more frequent and intensive drought and flood events.
- Uncertainty limits adaptation plans, which requires better projection skills and more flexible measures.
- Centralized system has less flexibility, though it has more effectiveness.
- Distributed adaptive capacity building is required to increase flexibility.

Goals

- Evaluate spatial distribution of vulnerability for a water supply system
- Identify hotspot (the most vulnerable areas and reasons to cause vulnerability)
- Develop distributed response systems and increase resilience

Procedure for Impact Assessment

Downscaled GCMs ensmeble

 Downscaled by the National Science and Technology Center for Disaster Reduction (NCDR) in Taiwan.

Projections of GCM and ensemble result (A1B scenario)

Tool for assessment

Taiwan Water Resources Assessment Program to Climate Change (TaiWAP)

Components of TaiWAP

Study area-Kaohsiung

- The second largest city in Taiwan
- Population around 2.9 million
- Total area : 2,946km²

Flowchart of making water resources vulnerability map

Water Supply System

Water supply system

Sustainable Development Laboratory

System dynamic modeling water supply system (VENSIM)

Deficit Percent Day Index-DPD

- Japan Water Resources Agency(1977), Hsu(1988)

$$DPD(\% - day) = \sum_{i=1}^{N} \frac{D_i - S_i}{D_i} \times 100(\%)$$

Degrees of impact and sensitiviity

- Use Exceedance Probability=50% of DPD as the Impact Index of water deficit
- Population density as Sensitivity of domestic water
- Industry value of output as Sensitivity of industry water
 - Vulnerability=Impact×Sensitivity

Adaptive capacity building

- Reservoir?
 - Huge cost
 - High Impact to ecology
 - Not flexible
 - Not easy to promote
 - Need long time to plan and build
- Distributed response system
 - Low cost
 - Low impact development
 - Flexible
 - Easy to plan
 - Short time for planning

Distributed response facilities

Pumping Well

Rainfall Harvesting

Sea water desalinization

Distributed response system

Sustainable Development Laboratory

Distributed response system result

- Under climate change uncertainty, flexible strategies are needed.
- Distributed response system can help to reduce the water shortage in a system by rising up the flexibility of hotspots.
- Cost and energy usage need to be considered

THANK YOU