

Hydropredict2012

Multi-step-ahead inflow forecasting for reservoir operation and management in mountainous areas

Fi-John Chang\*, MJ Tsai, LC Chang, WF Yang



Multi-step ahead inflow forecasting has a critical role in reservoir operation during typhoons.

We develop a novel semi-distributed, data-driven, rainfall-runoff model for reservoir.

An Adaptive Network-based Fuzzy Inference System (ANFIS) is created using multiple information.





## Taiwan

**Area:36000km2** Population:24 M

Rainfall
Annual rainfall: 2,500 mm
2.5 times the world average
Runoff
river: short and steep
Typhoons
Last century about 350 Typhoons





## **Study Area--**Shihmen reservoir



#### Catchment area :763.4 Km<sup>2</sup>

 Annual average rainfall : 2,200 to 2,800 mm/year.
 Most of rainfall happen in May to September mainly contributed by Typhoons.





#### National Taiwan University





## Quantitative Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS)



#### <u>Precipitation Estimation from Remotely Sensed Information using Artificial</u> Neural Networks (PERSIANN)



Center for Hydrometeorology and Remote Sensing, University of California, Irvine

### **Real Time Global Data: Cooperation With UNESCO**



### W National Taiwan University



## Calibration







### Calibration

13 Typhoons are collected data length is 641.
 Train: 7 events with data length of 350.
 Validation: 3 events with data length of 153.
 Test: 3 events with data length of 138.





## $Min(F) = \min\{f(X_g(t-5) \times \theta_1 + X_r'(t-5) \times \theta_2 + X_s'(t-5) \times \theta_3) - Y(t)\}$



#### W National Taiwan University



## Quantitative Precipitation Forecast Model











#### National Taiwan University



Inclusion of spatial distribution in a data-driven, rainfall-runoff model to improve reservoir inflow forecasting in Taiwan in Hydrologic Process 2012

## **Rainfall-runoff Analysis**



# Rainfall-runoff analysis: rain gauges against reservoir inflow

#### **Correlation Analysis:**

- a) Calculate correlation coefficient
  - 12 gauges
  - 11 inflow travel times (t~t-10)
  - 8 individual typhoon events
- b) Select the travel time based on the maximum mean correlation coefficient.



## Radar data against reservoir inflow

### **Correlation Analysis:**

a) Spatially-continuity of radar data.

#### b) 434 radar grid cells

c) To prevent the development of an excessively complex solution, spatial lumping was performed.



## Spatial lumping by using DEM

**Catchment grid** 

#### **Temporal lumping**



**No Data** 



## Quantitative Inflow Foreca Model



## Inflow forecasting model - ANFIS

k = 1,2...5 and n = rainfall-runoff travel time



### Structure of Model Q1 – Inflow only

 $\frac{\text{Model Q1}}{\text{Inflow}} : \text{Forecasting flow at t+K ( K=1~5) by using Inflow(t) and } \Delta \text{Inflow=Inflow(t)-Inflow(t-1)}$ 

Inflow provide the trend of increase or decrease to forecasting model.



### Structure of Model Q2– Inflow and Gauge rainfall

- Model Q2: Forecasting inflow by using rainfall of 12 gauges with different time lag, Inflow(t) and Δ Inflow.
- The time lag for 12 gauges were determined based on the result of correlation coefficient.



## Structure of Model Q3 – Inflow and Radar

- Model Q3: Forecasting inflow by using 4 sum of the rainfall with different time lag, Inflow(t) and Δ Inflow.
- The time lag for 4 sub-catchment were determined based on the result of correlation coefficient map from Radar Rainfall.



## Data set

|            | Event     | Date             | Path | Peak Flow<br>(cms) | Mean    | Std.   |
|------------|-----------|------------------|------|--------------------|---------|--------|
| Training   | SEPAT     | 2007/08/16~08/19 | 3    | 1844.4             | 1074.09 | 698.22 |
|            | KROSA     | 2007/10/04~10/07 | 2    | 5300.39            |         |        |
|            | KALMAEGI  | 2008/07/16~07/18 | 2    | 203.13             |         |        |
|            | SINLAKU   | 2008/09/11~09/16 | 2    | 3351.24            |         |        |
|            | MOROKAU   | 2009/08/05~08/10 | 3    | 1837.54            |         |        |
| Validation | WIPHA     | 2007/09/17~09/19 | 1    | 2788.15            | 1006.69 | 664.10 |
|            | FONG-WONG | 2008/07/26~07/29 | 3    | 2039.78            |         |        |
| Testing    | JANGMI    | 2008/09/26~09/29 | 2    | 3291.99            | 1147.78 | 572.91 |

### **Testing results for different models**

### Model Q3 has highest performance, especially when predict flow after t+4



## Model Q3- time series plot





## An early warning system to reduce disaster risk





### Conclusion

With more rain-gauge inputs (in Model Q2) than four subcatchment average inputs (in Model Q3) did not reduce the forecasting error.

- The superior contribution arising from aggregated spatialtemporal radar rainfall on inflow forecasting is particular clear at t+4~t+5.
- The radar rainfall can increase the models' performance and reduce the time shift problem.

The on-line early warning system built in this study can be very useful for flood control and management.

http://www.youtube.com/watch?v=jfer6mKoORo





## Thanks for Your Atten