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Outline

• Overview: Tritium as tracer in hydrology

• Tritium monitoring in precipitation and river water

• Use of lumped parameter models in hydrogeological 
studies

• Age dating and components of base flow in rivers: 
implications/predictions for water pollution aspects

• Use of tritium/helium-3 technique for dating “young” 
groundwater (<100 a)
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Tracer hydrology - isotopes

• Catchment and groundwater dynamics: 
characterizing fast and slow flow systems as well as 
mixing patterns

• Tracer vs. hydrodynamic ages � validation of 
conceptual/numerical flow models and its use as a 
forecasting tool

• Qualitative and quantitative approaches with 
isotopes and dissolved gases
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Why date groundwater/baseflow ? 

• Recharge rates (relatively direct compared to water 
balance)

• Flow model adjustments (recharge, porosity, dispersivity, 
flow paths)

• Chemical fluxes (contaminants, oxidants, exchangers, etc.)

• Historical records (long-term vs transient)

• Reaction rates (in situ)

• Discharge ages and residence times (aquifer volume and 
flux, watershed mass balance)
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Range of groundwater ages (USGS)

What does it mean if groundwater is old?  
Assess vulnerability, mixing (age distribution 

and MRT, impact on quality)
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Tritium ( 3H)

• Sources:
- Cosmogenic: 

14N + 1n  → 3H + 12C
Production rate: 0.28 at cm-2 s-1

- Anthropogenic:
(The thermonuclear 
bomb testing and other 
uses)

Natural inventory ~ 4 kg
Bomb testing ~ 700 kg 

injected into the upper 
atmosphere
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Tritium ( 3H)

• Decay: 3H  → 3He + β- (Emax = 18 keV)
• Half-life = 12.32 a (4500 days) � dating ~100 a
• Measurement by liquid scintillation counting after 

electrolytic enrichment. Content expressed in:   
Tritium Unit (TU) ⇒ tritium ratio
1TU ⇒ 3H/1H = 10-18

1TU = 0.119 Bq/kg or 3.2 pCi/liter 
• Analytical uncertainty: 0.1 to 0.3 TU. Current levels 

in precipitation 1 to 15 TU.
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Tritium conc in precipitation has been monitored since 1960 by th e

Global Network of Isotopes in Precipitation

All GNIP data available in: www.iaea.org/water
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Global tritium distribution in 1960 s

Most nuclear tests conducted in the Northern Hemisphere. 
Increase tritium contents up to 3-4 orders of magnitude.



IAEA

Tritium in precipitation: global picture
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Tritium ( 3H) and C-14 in nature
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Decay of 14C allows groundwater dating
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Sampling: confined vs unconfined aquifers

Representative water 
samples: Importance of 
adequate protocols for 
sampling, storage and 
shipment
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Single Component Dispersion ModelSingle Component Dispersion Model
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Cook, P. G., Solomon, D. K., Plummer, L. N., Busenberg, E., and Schiff, S. L., 1995, Chlorofluorocarbons as tracers of groundwater 
transport processes in a shallow, silty sand aquifer: Water Resources Research, v. 31, p. 425-434.

Sturgeon Falls, Ontario
Surficial silty sand aquifer
Water table near land surface

Measuring vertical 
infiltration in a 
sandy aquifer with 
CFCs and tritium
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Robertson, W. D., and Cherry, J. A., 1989, Tritium as an indicator of recharge and dispersion in a 
groundwater system in central Ontario: Water Resources Research, v. 25, p. 1097-1109

3H > 100 TU

R

Sturgeon Falls, 
Ontario

2-D flow model with parameters to 
fit the distribution of 3H 

Recharge varies from about 
0.05 to 0.18 m/yr 
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Use of tritium for gw dating
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• Rivers are good integrators of processes 
affecting basins

• EU water framework asks for collection of 
baseline climate change indicators
• We can use isotopes as baseline indicators!

Why do we care about isotopes 
in streams & rivers?

• Surface water/groundwater
interactions

• Residence times/cycle
times

• Sources of recharge/precip
• Seasonality effects
• GNIR as a basis for local
to global comparisons

ET Precipitation
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Concept of Mean Residence Time (MRT) for 
surface and ground -waters

• Requires a flow weighted sampling of ALL flow paths
• Integrated samples MIGHT be obtained from base 

flow
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Understanding nitrate, 15N and groundwater ages

Nitrogen isotopes and groundwater dating provided t he key elements for 
explaining varying nitrate contents and changing re dox conditions in an 
agricultural catchment
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IAEA project on baseflow/shallow groundwater dating

2004-2009: using stable isotopes, 
tritium, and CFCs (ages: 11- ~50 yrs)

2010-2015: tritium/helium-3 dating 
Also to include Rn-222 surveys to 
locate zones of g/w discharge
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Groundwater-river interaction: identification of 
localized discharge in rivers using 222Rn detectors

Recently developed portable 
Rn-222 analyser is used to 
identify areas of groundwater 
discharge in rivers and lakes, 
facilitating sampling for 
chemistry/isotopes and optimize 
monitoring networks

Danube River km

05001000150020002500

22
2 R

n 
(B

q/
m

3 )

0

20

40

60

80

100

120

140

160

180

Danube Radon-222
Tributary Radon-222

Inn

Moson
Danube 

Arm

Sio

Velika
Morava

Drava

Tisa

Sava Jantra
Siret

Prut

No Data



IAEA

Lumped parameter
models describing
gw flow : Software

Multis (1995)
FlowPC

Boxmodel
Tracermodel

Lumped
Lumpy

TracerLPM – USGS (2012)
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Lumped parameter models describing gw flow
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Lumpy: Two Lumped Parameter Models in Parallel

LPM1
(PM, EPM, 
LPM, DM)
MRT 1, 
Peclet 1

LPM2
(PM, EPM, 
LPM, DM)
MRT 2, 
Peclet 2

•2 lumped parameter models,
•Each having:

•Own MRT 
•Own Peclet Number
•Own Input Function
•Own Delay, Factor, Shift

•Are mixed in free proportions

•Data valid for LPM1, LPM2 
and Mix can be used to fit.
•Any Tracer (18O, D, Tritium, 
3He, Noble Gases, CFC, SF6, 
85Kr, 39Ar, 14C, 81Kr, 36Cl…).
•Any number of measurements.
•Automated best fit selection for 
5 parameters (MRT, Peclet, Mix)
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Danube basin Residence Times

Upper Danube Basin

Basin residence times are a major control on tempor al 
concentrations of nutrients and contaminants

Evaluation of water residence times of the upper 
Danube using tritium measurements of precipitation 
and river water
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Modelled tritium content in Danube (Lumpy)
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Time evolution of the T P/TR ratio in the Upper 
Danube 

River tritium is now at or near pre-bomb levels
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“short” residence time 
component (mean residence time 
of 0.75 years) “channel flow”

“long” residence time” 
component (mean residence time 
of 15 years) “groundwater flow”

Average combined residence 
time is about 6 years.

Model Results

A two-box model provided the best fit.

Box model 1 used piston flow assumption & box model  2 used   a 
gamma assumption

Conclusion - groundwater will moderate concentration s 
in the basin over the long-term (> 5 years)
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Danube Survey 2007 – Isotopes, chemistry

Isotopes were used during the 2007 Joint Danube Sur vey 2, 
coordinated by the ICPDR to investigate the river h ydro-
ecology

Source ICPDR, 2009
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Understanding tributary mixing with tritium

Tritium contents indicate 
characteristics of river mixing zones 
below tributary confluences

The mixing zone below 
the Vah extends at least 
5 km below the Danube 
confluence!

Should expect 
heterogeneity in 
nutrient and pollutant 
concentrations at 
distances well below 
confluences

Danube
above Vah Danube center & right 

channel 5km below Vah

Danube left channel 
5km below Vah

Vah tributary
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River bank filtration: Szigetköz, Hungary

Ref: USGS

The groundwater in 
the gravel aquifer
in Szigetköz is:

• Fresh (less then 50
years old)

• Originates from the 
Danube

• Horizontal flow 
velocity is high (up to 
500 m/a)
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Tritium and helium -3 in groundwater
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Dating Groundwater Using T/3He

• stable ideal tracer T+3He, 
• global uniform atmospheric 3He concentration
• independent from tritium input function
• also applicable with tritium contamination














+⋅=

−−⋅=−⋅=

)(3
)(3

1ln

)/1()0(3)(3;/)0(3)(3

tH

tHe
t

teHtHeteHtH

τ

ττ

Tritium 3Helium 
(radioactive mother) (stable daughter)



IAEA

T/3He dating : separation of helium components

• Heeq: Solubility equilibrium, needs infiltration temperature
• Heexc Excess air determined via Ne
• Heterr separation possible if either crustal He (3He/4He < 10-8) 

or mantle He (3He/4He > 10-5) present, not for both
• typical 3He in a recent (1a) groundwater:

80% 3Heeq,  14% 3Heexc,  6% 3Hetrit,  0.05% 3Heterr

3Hemeas= 3Hetrit + 3Heeq + 3Heexc + 3Heterr

4Hemeas=               4Heeq + 4Heexc + 4Heterr
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Tritium/helium -3 dating of baseflow
Fischa River, Austria
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Spring water in the Vienna Basin dated using tritium

Ref: IAEA
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Marchfeld

Wien

Ref: M. Kralik (Austrian Env. Agency)
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Concluding remarks: Use of tritium in isotope 
hydrology

• Tritium still a useful tracer as indicator of recently 
recharged water (qualitative and quantitative). 
Simpler use than other tracers of young waters (e.g. 
CFCs, SF6, noble gases)

• Combined use of tritium and 3He offers significant 
advantages and time resolution to other methods

• Tritium survey at catchment level, supported with 
3He helps in understanding water flows, residence 
time of water, mixing patterns and 
assessment/forecast of pollutant behaviour in 
aquifers and rivers.
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Thank you !


