Hydropredict Wien 2012

Quantifying uncertainty in large-scale hydrological model inputs

Chantal Donnelly: Swedens Meteorological and Hydrological Institute, chantal.donnelly@smhi.se

What is Large-Scale Hydrological Modelling (to us)?

- Large domain, generally multi-basin (e.g. global, continental, national models)
- Too many catchments for individual checks of input data
- Too many catchments for calibration to individual rivers
- Accept lesser model performance locally to optimise the model's performance simultaneously across the whole domain

Why?

- Deliver continent wide assessments, all discharges to a sea, clim change, flood frequency, drought frequency etc..
- Transboundary rivers are treated homogenously
- All rivers within a region (e.g. a country) are treated homogenously
- Useful for PUB gives an estimate of uncertainty

HYPE model: *Hy*drological *P*redictions for the *E*nvironment:

- Developed 2003 to 2008 at SMHI, following on from the very successful HBV concept
- Processes can be landuse or soil-type dependent
- Simulates routing, lake processes and simplified regulation, simplified crop water user and irrigation routine
- Water and Nutrients
- Can be set up for large domains at relatively high resolution using readily available databases for input data

- E-Hype (Europe, Q)
- Balt-HYPE (Baltic Sea basin, Q, N & P)
- S-HYPE (Sweden, Q, N & P)
- Arctic-HYPE (Arctic, Q)
- LPB-HYPE (La Plata Basin, Q)
- MENA-HYPE (Middle East, Northern Africa, Q)
- Niger-HYPE (Niger River, Q)

E-HYPE – pan European HYPE application

- 35000 subbasins
- Median size 215 km²
- V2.0 delivers Q variables
- V2.1 to deliver WQ (N&P also)
- Used in many FP7 projects
- Used for hindcasting, operational forecasting and future climate predictions
- Under constant development

>1000 stations for calibration/validation

- Selected from GRDC, EWA and Baltex
- Allows for validation of catchment sizes from 200 km² to 800 000 km² natural & affected flows

What is important for large-scale models?

- Deliniation and linking of watersheds from continental DEMs/I
 - Getting correct precipitation from continental scale grid
 - Extractions: Irrigation, TWS and Industrial Local!
 - Groundwater losses Local!
 - Lake/reservoir information (incl regulation)

- Calibration

Increasing Effect on Model Performance

<u>SMH</u>

Delineation of Catchments

Error in catchment area derived from HydroSHEDS as compared to published area at 1007 stations in Europe

Donnelly, C., Rosberg, J., Isberg, K. A Validation of River Routing Networks for Catchment Modelling from Small to Large Scales. Hydrology Research (in press).

Pan-European Gridded Precipitation

Compared published catchment precipitaiton in UK and SE with catchment precipitation from driving data (ERA-INTERIM corrected to GPCC)

Spread of precipitation errors reduces (to within 10 %) around 2000 to 4000 km² Remember: ERAINTERIM ca 7000 km² grid, GPCC ca 3000 km²grid. – but doesn't say anything about variability!

Model performance at various catchment scales

Percent of catchments within +/- 20 % volume error by catchment size

Median NSE by catchment size

Other significant sources of volume error

- Anthropogenic
- Extractions for TWS, irrigation, industry
- Groundwater Losses (and gains)
- Measurement/Reporting Error caution when using data from large scale databases. Visual check of all hydrographs required.

Exempel på sidhuvud - ÅÅÅÅ MM DD (Välj Visa, Sidhuvud sidfot för att ändra)

Spain – Change in regulation regime and extractions

Kuban River Russia - Very unnatural flows, regulation, extractions from reservoir?

Gypsey Race – Boynton – flows as GW intermittently? But small catchment – these effects 'relatively' much smaller in larger catchments

Dniepr –Very unnatural flows, regulation, extractions from reservoir (Ukraine)

Other inputs affecting variability

Lake area is fairly consistently underestimated – probably because GLWD consistently ignores lakes less than grid resolution

Regulation

- Can approximate for many hydropower dams, but harder for multipurpose reservoirs:

Göta River at Lake Vänern outlet

Useful to know degree of regulation upstream of each point in the model domain.

SMH

Some Results

Conclusions

- We can do a good job in simulating natural flows in catchments 5000 to 800 000 km2 – even with minimal calibration
- Catchment delineations from regional/global databases are good for larger rivers, but as catchment size decreases, the chance of errors increases. We suggest minimum catchment size for Hydrosheds in Europe of 5000 km²,
- Minimum catchment size should be limited to precipitation input resolution -Simple bias correction of a reanalysis data set to a finer grid does not capture sufficient variability of precipitation
- Anthropogenic impacts difficult to model on large scale using readily available data!
- Runoff databases need better metadata on human impacts! (Hannah et al. 2010)

SMHI

Any Questions?

Input Data – Readily available global/regional databases

	BALT-HYPE	E-HYPE
Areal extent	1,8 million km ²	9,6 million km ²
Median Subbasin Resolution	325 km ²	215 km ²
No. Subbasins	5128	35000
Topography/routing	Hydro1K (USGS 2000)	HydroSHEDS (Lehner et al., 2008), (Hydro1K for latitude > 60 deg)
Forcing Data	ERAMESAN 1980-2004 (Jansson et al., 2007), Resolution = 11 km.	GPCC scaled ERA-INTERIM
Landcover	Globcover 2000	CORINE
Soil-types	European Soils Database (JRC, 2006)	European Soils Database (JRC, 2006)
Runoff Data	GRDC (GRDC, 2009b), BHDC (2009)	GRDC. EWA (GRDC, 2009a), BHDC
No. Calibration Stations	35	Total
No. Validation Stations	121	

I vilken skala kan vi använda E-HYPE resultat?

Resultaten blir bättre je större avrinningsområdet blir med det finns fortfarande några väsentliga fel kvar för vissa avrinningsområden