Modeling impacts of anthropogenic activities and climate change on water resources in data-rich and data-poor regions

P. Caldwell, G. Sun, S. McNulty, E. Cohen, J. Moore Myers

USDA Forest Service, Eastern Forest Environmental Threat Assessment Center Raleigh, NC

HydroPredict, Vienna, September 2012

Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank

Managing water in a changing world: What does the future hold?

Increasing population

Climate change

Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank

Land conversion

Water Partnership Program (WPP)/TWIWA-The World Bank

WaSSI application case studies

Conterminous U.S.

"Data Rich" region

Evaluate the impacts of impervious cover, water withdrawals, and future climate change on river flows

Rwanda

"Data Poor" region

Evaluate landuse and climate change impacts on water quantity and sedimentation

WaSSI model structure

Monthly Watershed Water Balance

Water Withdrawal and Return

Flow Routing

Water Supply Stress & Instream flows

Watershed water balance

HydroPredict, Vienna, September 2012 Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank

Evapotranspiration

ET=f(PET, PPT, LAI) Sun et al., Ecohydrology,2011

Soil moisture and runoff

Sacramento Soil Moisture Accounting Model NOAA, National Weather Service

Water withdrawal and return

Estimated water use in the U.S. by sector, adjusted for population *U.S. Geological Survey, 2009*

Streamflow

Q_{out} = Q_{in} + Q_{gen} – WU Caldwell et al., HESS, 2012

Case Study: United States

WaSSI applications

- Lockaby, G., Nagy, C., Vose, J. M et al., 2011. Water and Forests, in Wear D. N. and Greis J. G. (eds.) The Southern Forest Futures Project: Technical Report.
- Averyt, K., Fisher, J., Huber-Lee, A., et al., 2011. Freshwater use by U.S. power plants: Electricity's thirst for a precious resource, A report of the Energy and Water in a Warming World initiative, Cambridge, MA, Union of Concerned Scientists.
- Marion, D., Sun, G., Caldwell, P. et al., 2012. Managing Forest Water Quantity and Quality Under Climate Change in the Southern U.S., in Vose, J. (ed.) Climate Change Adaptation and Mitigation Management Options, (In press).
- Sun, G., Caldwell, P.V., Georgakakos, A.P., et al., 2012. Impacts of Climate Change and Variability on Water Resources in the Southeastern US, in: Southeastern Regional Technical Report to the National Climate Change Assessment, Water Resources, (in review).

Inputs- United States

Database	Source	Resolution
Watershed boundaries	USGS Watershed Boundary Dataset	8-digit Hydrologic Unit Code
Soil properties	State Soil Geographic (STATSGO) Dataset	1 X 1 km
Land cover and impervious area	2006 National Land Cover Dataset	30 X 30 m
Leaf area index	2000-2006 Moderate Resolution Imaging Spectroradiometer (MODIS)	1 X 1 km
Mean elevation	USGS National Elevation Dataset	30 X 30 m
Climate (temp, precip)	PRISM, or CMIP ₃ IPCC AR ₄ projections	4 X 4 km 12 X 12 km
Watershed connectivity	USGS National Hydrography Dataset	1:100,000
Water withdrawals, return flows	2005 USGS Water Use Estimates	County
Population and impervious projections	USEPA Integrated Climate and Land Use Scenarios	County

U.S. model testing Caldwell et al., HESS, 2012

Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank

Impacts on historical stream flow

Caldwell et al., HESS, 2012

Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank FOREST SERVICE

Impacts on stream flow by 2041-2060

Caldwell et al., HESS, 2012

Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank

Case study: Rwanda

Nyungwe Forest

- Essential water source
 - ~30% in Nile River Basin
 - ~70% in Congo River Basin
- National Park Buffer Zone created in 1984 to:
 - Protect the forest
 - Produce wood products
 - Provide employment opportunities for local people
 - Numerous management issues have led to loss of forest and soil erosion

Nyungwe Watershed Modeling Project

- Objective: Simulate landcover and climate change impact on water quantity and sedimentation in Nyunwge and surrounding area
- Partners: US Forest Service, Wildlife Conservation Society, and US AID
- Tools
 - WaSSI- Water quantity
 - InVEST- sedimentation
- Scenarios
 - Current landcover and climate (1989-2009)
 - 20% forest conversion to agriculture
 - 2021-2040 climate, multi-model ensemble A2 emission scenario in (PPT +1.4%, TEMP +1.0°C)

Inputs- Rwanda

Database	Source	Resolution
Watershed boundaries, mean elevation	Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM2	30 X 30 m
Soil properties	Harmonized World Soils Database Version 1.2	1 X 1 km
Land Cover	2009 European Space Agency (ESA) Globcover	300 X 300 m
Leaf Area Index	2000-2006 Moderate Resolution Imaging Spectroradiometer (MODIS)	1 X 1 km
Climate (historical)	University of East Anglia Climatic Research Unit (CRU) Monthly Time Series Data, V. 3.1	o.5 X o.5 degree
Climate (future)	Wildlife Conservation Society Albertine Rift Climate Change Assessment: Multi-model Mean Downscaled IPCC AR4 Data	o.5 X o.5 degree

Rwanda model testing

HydroPredict, Vienna, September 2012 Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank

InVEST Results: Predicted mean sediment exported by watershed

20% forest conversion

Take away points

- Water is a priority for the U.S. Forest Service!
- WaSSI is a modeling tool under development to separate and quantify impacts of humans and climate change on water resources
- WaSSI can be easily adapted to different regions, scales, and data availability
- The goal of WaSSI is to:
 - Help answer the "So what?" questions of climate predictions
 - Identify priority watersheds for conservation and management
 - Cost effectively test planned management scenarios

www.forestthreats.org/research/tools/WaSSI

HydroPredict, Vienna, September 2012

Special Session 3: Choosing Models for Resilient Water Resources Management Water Partnership Program (WPP)/TWIWA-The World Bank

Thank you!

Peter Caldwell pcaldwello2@fs.fed.us 00 1 919 515 1560 www.forestthreats.org

A legacy of Forest Service management for ecosystem services

- Organic Act of 1897
 - "No national forest shall be established, except to improve and protect the forest within the boundaries, or for the purpose of <u>securing favorable</u> <u>conditions of water flows</u>..."
- Weeks Law of 1911
 - "...examine, locate, and purchase such forested, cutover, or denuded lands within the watersheds of navigable streams as in his judgment may be necessary to the <u>regulation of the flow of navigable streams or for the</u> <u>production of timber</u>."
- Sustained Yield Forest Management Act of 1944
 - "...in order to secure the benefits of forests in <u>maintenance of water supply,</u> regulation of stream flow, prevention of soil erosion, amelioration of <u>climate, and preservation of wildlife</u>."
- National Forest Management Act of 1976
 - Protection of "<u>multiple use and sustained yield of the products and services</u> <u>obtained</u>" and "the coordination of outdoor recreation, range, timber, watershed, wildlife and fish, and wilderness."

Local scale: Blue River, Colorado Caldwell et al., HESS, 2012

