

Uncertainty assessment of spatially distributed nitrate reduction in groundwater using multiple geological realizations

Anne Lausten Hansen

Geological Survey of Denmark and Greenland

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Spatially differentiated regulation

- In many Danish catchments more than 50% of nitrate leaching is reduced in the saturated zone
- Heterogeneity in subsurface conditions
 spatial variation in amount of nitrate reduction within a catchment
- A **spatially differentiated regulation** with **focus** on lowering nitrate leaching on **areas with low reduction** would be more efficient

GEUS

Estimating spatially distributed nitrate reduction in groundwater

- Tool: Distributed hydrological model
- Challenge:
 - Data quantity
 - Data quality

Large uncertainty on model results on grid scale!

Key question: At what scale can the model results be used?

Spatial

patterns?

Objectives

- Estimate the uncertainty on spatially distributed nitrate reduction due to geological uncertainty
- Analyze how the uncertainty on nitrate reduction changes with scale
- Evaluate on the predictive scale (RES) of the model
 - > Representative Elementary Scale (RES):

"The RES is the **minimum scale** at which a model, at best, has **predictive capability** corresponding to a **given accuracy**" (Refsgaard et al., 2014)

Methodology

- 1. Geological models (2x10)
- 2. Hydrological models (2x10)
- 3. Nitrate models (3x2x10)
- 4. Nitrate reduction maps (60)
- 5. Uncertainty and scale analysis

Norsminde fjord catchment

- Catchment area: 101 km²
- Soil type: Clay till
- Land use: 70% agriculture

Geophysical mapping in Norsminde

- Mini-SkyTEM (SkyTEM101)
 - Airborne TEM
 - High near-surface resolution
- Nearly 2000 line kilometers
- Distance between lines: 50 100 m

Resistivity data from SkyTEM

Sand

1,000

100

10

Resistivity [Ohmm]

0.1

Geological models

- Delineation of 7 large scale geological structures
- Stochastic simulations for glacial sequence 1
 - Geology: Clayey till with sand lenses
 - Software: TProGS
 - Borehole data (10 realizations)
 - Borehole data + SkyTEM data (10 realizations)
- Deterministic geology for the other geological structures based on SkyTEM data

Hydrological models

- Model framework: MIKE SHE
- Grid scale: 100x100 m
- All hydrological processes included
- **Constant parameters** within geological units
- All 2x10 model individually calibrated using **PEST**

SkyTEM geology

Borehole geology

Nitrate models

- Model framework: MIKE SHE Particle tracking
- **Simulation period:** 2000-2003 with N-input, additional 4 years without N-input
- Nitrate input: Daily N-leaching from root zone
- Nitrate reduction: Instantaneous reduction at redox interface
- Redox interface:
 - ➤ 3 scenarios for spatial pattern
 - Actual location calibrated
- Calibration target
 - Nitrate arrival % (NAP) = <u>N transport to fjord</u> = 45% Total N leaching

Nitrate reduction maps

All **60 nitrate models** can be **calibrated** to a **NAP = 45%**, but result in rather **different nitrate reduction maps**

Mean nitrate reduction and standard deviation

Borehole geology (30 maps)

Mean and standard deviation calculated across the maps for each grid cell

Mean nitrate reduction and standard deviation

Upscaling of nitrate reduction maps

Uncertainty on nitrate reduction as a function of scale

- The uncertainty decreases with increasing scale
- Uncertainty lower for SkyTEM geologies
- Decrease largest 0-500 m → Mean length of sand units is 500 m
- **RES** is dependent on the **acceptable level** of **uncertainty**

Discussion and conclusions

- Areas of high and low reduction can be predicted with distributed hydrological models
- Large uncertainty on predicted nitrate reduction at grid scale
- Uncertainty decreases with increasing scale, but the decrease levels out with scale
- Using geophyscial data in combination with borehole data for setting up geological models lower the uncertainty
- Only **geological uncertainty considered** in study
- Results are conditioned on the data and models used → we ignore bias on models and data → uncertainties underestimated

Discussion and conclusions

- Important to evaluate at what scale (RES) the results can be used
- Predictive capability (RES) of distributed models constrained by spatial resolution of key input data such as geology
- **RES** is **not** a **constant** value but depends on:
 - Chosen level of certainty
 - Characteristics of the area
 - Simulated variable

Nica Research NITRATE REDUCTION IN GEOLOGICALLY HETEROGENEOUS CATCHMENTS

Danish Council for Strategic Research

Thank you for your attention

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND