TEMPORAL AND SPATIAL DISTRIBUTION OF NITRATE LEACHING IN MEDITERRANEAN IRRIGATED AGRICULTURAL ECOSYSTEMS

Hayriye Ibrikci*

Turkey

Mahmut Cetin Hande Sagir Manfred Fink Ebru Karnez Takanori Nagano Suha Berberoglu Jumpei Kubota Yunus Karaomerlioglu Turkey Turkey Germany Turkey Japan Turkey Japan Turkey

> Dr. Hayriye Ibrikci hibrikci@cu.edu.tr

Çukurova Univ. Soil Sci. and Plant Nutr. Dept. Adana, Turkey

20-24 Sept., 2015, Vienna, LUWQ

Outline

- Background
- Research Area : A case study
- Findings / Implications

Background

- Limited research on:
 - water pollution in an irrigated area
 - nitrate and salt dynamics in the soil profile
 - nitrate and salt budget
 - modelling
 - regional impacts

• The related projects: 2006 - present

• Five different projects with Spain, Germany, Japan and Slovenia

- Mediterranean countries, including Turkey, among the other sub humid counties in the world are likely to be seriously affected by global climate change in the coming decades, with serious and prolonged drought conditions and consequent limitations on crop production.
- Irrigation, together with nitrogen fertilizers can induce two major environmental problems, i.e. nitrate leaching which influences the water quality, and denitrification loss as gas forms to the atmosphere, which is a major risk to global warming.
- Therefore, action needs to be taken to address those concerns. Integrated water and fertilizer management worldwide is one approach, involving an increasingly important role in terms of productivity of agricultural crops and sustainable use of water resources.

• Nitrogen is:

- A plant nutrient
 - Biologically fixed for plants
 - Fertilizer constituent
 - Energy source for microorganisms
 - Water pollutant (groundwater, drainage, surface water, rivers, lagoons.... etc.)
 - Emitted to the atmosphere; air pollutant
 - A factor on global warming
 - Important for farmers' economy

• Fertilizer practices (from the farmers survey)

- DAP, 20-20-0, 15-15-15 at preplanting
- Ammonium sulfate, ammonium nitrate, urea as side dressing
- Fertigation
- Foliar application

- In European Countries, under the framework of "EU Directives", NO₃ concentrations in water sources are determined for the critical/threshold levels.
- Until recently, nitrate pollution risks and mass-balance calculations in a broader agro-ecological medium (soil, plant, water and atmosphere), especially in water resources, were not considered in our region.
- Therefore, irrigation-induced NO₃ pollution in groundwater was assessed during the hydrological year of 2014 in Akarsu Irrigation District of southern Turkey.

STUDY AREA : A case study

Lower SeyhanPlain, Akarsu Irrigation District (9,495.00 ha)

<u>Area</u> 9,495 ha <u>Climate</u> Mediterranean

Precipitation 650 mm

<u>Average Temperature 18 °C</u>

Water source Seyhan Dam

<u>Crops</u> Summer: Maize, Cotton Winter: Wheat Yearly: Citrus

Irrigation gauging station in 5 locations Drainage gauging station in 3 locations

ÇALI DAĞI

I HOCALL

Three irrigation-inflow sites (L3, L6 & L7) one irrigation-outflow site (L5), an additional irrigation gauging station (L9) and three drainage gauging stations (L2, L11 & L4)

JYUKGO

AKARSU Irrigation District

Groundwater sampling

January, March, July, Sept.

- Soils are clay, high in calcium carbonate, high pH (>7.5) and low organic matter (< %1)
- There is soil mineral nitrogen

Land Use

Crops	Area covering, %
Wheat	34.1 (3237.8 ha)
Citrus	25.8 (2449.7 ha)
1. corn	29.2 (2772.5 ha)
2. corn	5.4 (512.7 ha)
Cotton	8.9 (845.1 ha)
Melons	1.3 (123.4 ha)
Vegetables	0.3 (28.5 ha)
Others	0.4 (38.0 ha)

Surface / gravity irrigation

Sprinkler

Drip irrigation

RESULTS

Nitrate concentration distributions in 2014

		NO ₃ concentration range (mg L ⁻¹)				
Time Areal Mean (mg L ⁻¹)		<10	10-20	20-30	30-50	50<
		Areal coverage (%)				
January	12.4	61.5	20.2	8.5	8.5	1.3
April	22.9	22.3	40.4	18.7	11.8	6.8
July	29.5	21.2	34.1	18.9	17.0	8.7
September	13.4	50.7	32.7	8.7	5.6	2.3

- Considerable seasonal effects on NO₃ levels in the groundwater.
- Consistently higher NO₃ values in spring (in wet season) and July (irrigation season).
- The main crop, wheat, is in the dormant-to-tillering stage in winter and early spring without any significant N uptake by the crop.
- Low nitrate concentration values September after crop harvest and in January.

Area, %

Nitrate conc. and loads in July and Sept. 2014

Soil / Fertilization

Excess fertilizer use (average of 297 kg N / ha) Soil mineral nitrogen accumulation (70-388 kg Nmin/ha)

Routine soil mineral nitrogen analysis, plant analysis, N use efficiency, integration with irrigation, modelling and senarios

Farmer's awareness, dialogue, capacity building, demonstration

Crops	Nitrogen Fertilizer Rates (2014)		
	kg N ha ⁻¹		
Wheat	265		
1. corn	380		
2. corn	360		
Citrus	350		
1. cotton	310		
2. cotton	310		
Melons	282		
Vegetables	163		
Vegetable greens	173		
Legumes (soybean, peanut)	160		

Previous status:

- Plot size fertilization trials
- Limited district level research
- Limited demonstrations at the farmers' fields
- Limited monitoring research and data

What we have learned / needs:

- Implementation of research findings at farmers' level
- Interdisiplinary work (co-design and co-production)
- Discover the interests of stakeholders
- Better communication and networking with farmers

ENVIRONMENT

Soil build up Water pollution Groundwater Surface water Drainage

Air pollution & Global warming

ECONOMIC

Fertilizer cost

Yield cost Cost of analysis

SOCIAL & CULTURAL

Fertilization habits Coventional cropping Networking Dialogue nd capacity building

CONCLUSIONS

- Cropping pattern, irrigation water and fertilizer application practices have the main effect on water quality and quantity aspects in the irrigated areas.
- Nitrogen fertilizer rates could be optimized.
- Irrigation practices need to be updated.
- Farmers and experts involvement are important.
- Research findings need to be shared by the government officers, experts, stakeholders and local farmers to apply environmental, social and economical development of the region.

Thankyou

- Authors gratefully acknowledge that this work was funded by:
- the *European Union* in the context of FP6 with project acronym QUALIWATER (INCO-CT-2006-015031),
- TUBITAK (TR) and BMBF (DE) with project acronym IRAFLUT (IntenC Project, TÜBITAK 1130151)
- Research Institute for Humanity and Nature (RIHN), Kyota, Japan