

How can we enhance the ecosystem services provided by buffer strips?

Brian Kronvang¹, Carl Christian Hoffmann¹, Annette Baattrup-Pedersen¹, Sandra Hille¹, Gitte Rubæk,² Goswin Heckrath², Flemming Gertz³, Henning Jensen⁴, Peter Feuerback⁵, John Strand⁵, and Marc Stutter⁶

- (1) Department of Bioscience, Aarhus University, Silkeborg, Denmark (bkr@bios.au.dk),
- (2) Department of Agroecology, Aarhus University, Foulum, Denmark,
- (3) Knowledge Centre for Agriculture, Aarhus, Denmark,
- (4) Department of Biology, Southern Danish University, Odense, Denmark,
- (5) Hushållningssällskapet Halland, Lilla Böslid, Eldsberga, Sweden
- (6) The James Hutton Institute, Aberdeen, UK

Outline

- Policy interventions: The General and The Targeted way
- Success story of reducing nutrient losses in Denmark
- The history of wet riparian zones in Denmark our lost nutrient sink!
- The newer ending story about Buffer Strip implementation in Denmark!
- Multiple ecosystem services provided by buffer strips Sediments, Nutrients, Pesticides & Nature
- > Testing the Integrated Buffer Zones (IBZs)

Policy interventions - Buffer Zones/Strips

Locally targeted Implemented considering all Ecosystem Intelligent Services at local scale – multiple use of regulations models and expert knowledge Targeted Implemented considering their buffering regulations effect for sediment and nutrients assisted by GIS-models **General regulations** General binding rules – implemented by Acts – e.g. 10 m Buffer Strips

Applied (inter)nationally

Combatting Land based Nutrient Pollution of Waters

1. Reduce the Nutrient sources

2. Enhance the **Nutrient Sinks** (Nutrient retention) – restored wetlands, buffer strips, constructed wetlands, controlled drainage, etc.

Where and how to go...??

Meadows and mires Meadows and mires 1992 1890 1890 1992 dense Fjor Wetlands 75 % reduction Idense River Basi se≍River Basi Meadows/mires 5 km Meadows/mires 5 km

Figure 3.2

Distribution of mires, freshwater meadows and coastal meadows in Odense River Basin in 1890 and 1992. Prepared on the basis of maps from 1890 (1:20 000) and the National Survey and Cadastre map from 1992 (1:25 000). The water bodies in 1890 only encompass those larger than 5 ha. The change from 1890 to the present time is primarily the result of land reclamation and drainage activities.

LUWQ 2015, Vienna 20-24. September 2015

AARHUS UNIVERSITY

LUWQ 2015, Vienna 20-24. September 2015

Buffer width for certain functions/services

Will restoration of wetlands increase the removal of N and P from surface waters?

Danish Governmental Decision: Second Action Plan on the Aquatic **Environment 1998** Restored areas Approved for Kabbel Hovedgård (2002) restoration Under investigation Halkær Ådal (2004)Villestrup Å (2003) Nørrekær Vorup Enge (2003)Hellegård Å Rødding Sø (2002)(2004)Hals So Føllebund (2000 (2004)Årslev Engsø Tuse/Mårsø (2005)Skibet Egebjerg Enge (2004)Grejså -Rohdenå/Urlevå Enghave A (2004)(2005) (2004) Frisvad Gedebækk Møllebæk (2003)Gram Å/Nørre Å (2003)Solkær Enge Odense Å (2004)(2004)Nagbøl A (2003)L Hesselbjerg Mose Wedells (2003) Sandholt (2004)bora 🛛 Ødis Sø Gamst Sø (2003) (2001 (2002)Gødstrup Enghave Lindkær (2005) Jels Å (2002) (2003)Gammelby Marstrup (2003) Karlsmoser Horne-Ulleruplund (2001)Slivse (2001)mølle Arnå (2003)Lekkende Maglemose Nakkebølle Ca. 4,000 ha lakes and 10,000 ha wetlands restored from 1998-2012

River Skjern 2200 hectares 34 mill. Euro

Lake Bølling Area: 375 ha + 375 ha meadow

The number and position of the 12 restored wetlands along the River Odense during the period 2003-2011

AARHUS UNIVERSITY Reach 4 – 3500 ha wetland along the re-meandered main channel in River Odense catchment in 2010

Department of Bioscience

Comparing Control catchment and Odense

River Monthly N concentrations: (Odense River - Control catchment) difference in (%)

<u>River Odense catchment</u> 1.8 ha restored wetland per km² catchment area

<u>Control catchment</u> 0.5 ha restored wetland per km² catchment area

Restored wetland: Example Geddebæk

Lake Arreskov sø

Restored wetland: Example Geddebæk

2005

Lake Arreskov sø

Restored wetland: Example Geddebæk

Summa: 1990-2013: N Load: Odense **Estuary**

Tonnes N per year

	1990	2013	2021
Total N load	3150	1500	830 ?
Sewage	450	200	
 Diffuse load	2700	1300	
Restored wetlands: 150 - 200 tonnes N/year General measures: 1200 – 1250 tonnes N/year			

2020

- Total N load, Normalized N-load, sewage

Diffuse N-load, Normalize

2010

Year

3000

1000

0 1990

2000

N load (tonnes 2000
 Department of Bioscience

 AARHUS UNIVERSITY

Buffer strips first introduced as a voluntary mitigation option for farmers to assist in lowering P inputs to surface waters from fields - 2004

>

The History of Danish Buffer Strip's (BSs)

- <u>1992</u>: Mandatory 2 m uncultivated BSs along all natural streams and protected streams ca. 28,000 km watercourses.
- > 2003: The Environmental Action Plan III included 10 m uncultivated BSs as a voluntary mean to reduce N and P pollution of surface waters with an aim to have 50,000 ha established in 2015.
- <u>2012</u>: Buffer Strip Act (June 2012): Mandatory 10 m wide BSs along all watercourses with running water in summer (ca. 60,000 km) and all lakes >100 m². Compensation for arable land was 300 EURO per year. Grassland 150 EURO per year.
- > 2014: New Buffer Strip Act: Mandatory 9 m wide BSs along all natural and protected watercourses (ca. 28,000 km) and lakes >100 m².
- 2015: New Buffer Strip Act proposed by new Government no mandatoryBuffer Strips (18th September 2015)

Intelligently established Buffer Strips:

Department of Bioscience

Multiple ecosystem services are provided by BSs and they

should be targeted after local conditions and local needs

Three aspects to benefiting water quality

Riparian benefits for water quality

1. Runoff control of sediments and associated substances

2. Within soil nutrient processing

3. Beneficial interactions between terrestrial biodiversity, aquatic ecosystems and nutrient processing

Buffer strips intercept soil material from erosion and surface runoff before it enters surface waters

Buffer strips -Their efficiency for sediment retention

Phosphorus pathways in DK - national estimate !

Buffer strips -Their efficiency for total phosphorus retention

Buffer Strip width should be calculated based on knowledge on erosion risk on adjacent fields – but how wide should they be?

P-risk models can assist in mapping high erosion risk areas on fields for targeted BS implementation

Buffer strip width	Sediment retention	Total P retention
2 m	63%	47%
4 m	70%	54%
10 m	85%	73%
20 m	96%	91%
30 m	99%	98%

Slope = 2° ; clay = 10%

28

In situ studies of bank erosion related to vegetation type in buffer strips have shown a significant higher bank erosion and hence particulate P loss in streams having low vegetation (grass and herbs) in the buffer strip as compared to streams having high vegetation (trees) in the buffer strip (Kronvang et al., 2009: JEQ, 41. 304-313).

Buffer strips and water temperature – importance for biota in streams

Department of Bioscience

AARHUS UNIVERSITY

Upper and lower tolerance (LT50) –trout _____ Upper tolerance threshold for hatching of B.rhodani eeg Upper and lower threshold for optimum growth of trout ------

BSs also provide ecosystem services for reducing pesticide loss and resulting toxicity in streams

What kind of nature do we have in existing buffer strips in DK?

Nature type	Frequency (%)	Vulnerability
Cultured meadow	17	*
Eutrophicated tall perennial	16	*
Wet meadow	12	**
Wet fallow	11	*
Dry fallow	10	*
Herbal Fringe ¹ (6430)	9	Unknown
Wet meadow	9	***
Alkaline fens ¹ (7230)	8	****
Marshy fring	3	*
Intermittently wet meadow ¹ (6410)	3	****
River mud-flats ¹ (3270)	<1	Unknown
Wet heat ¹ (4010)	<1	****
Quaking ¹ (7140)	<1	****
Mariscus bog ¹ (7210)	<1	****
Fens	<1	****

(N=454 areas, 21,000 10 x10 m plots)

New research project 'BufferTech' investigate effects of vegetation management for removal of nutrients and biodiversity

32

Intelligent Buffer Zone (IBZ)

By introducing Intelligent Buffer Zones (IBZ) the drainage will no longer have a direct passage to the aquatic environment. By cutting the drainpipes and introduce a ditch in connection with an infiltration zone the drainage water can infiltrated a zone made of several components of vegetation. Native tree species such as alder could transform even heavy clay soil to an active infiltration zone.

Milli Strategic Research

IBZ-Bölarp trials 2015

IBZ-Bölarp trials 2015

BalticSea2020

Water Flow

Water flow is measured every minute automatically with flow meters in inlet and outlet from each reservoir

Measured mean nitrate-N concentrations in inflow, ditch, outlet and seepage water

Efficiency of reservoir part of IBZ for nitrate removal

Time	Inlet flow (kg N)	Removal (kg N)	Removal (%)
14.04.2015 - 28.04.2015	2.3	0.88	38
28.04.2015 - 12-05.2015	4.4	2.46	56
12.05.2015 - 28.05.2015	5.8	1.31	23
28.05.2015 - 11.06.2015	4.2	0.52	12
11.06.2015 - 17.06.2015	0.7	0.38	54
Total	17.4	5.55	32

What happens with nitrate-N during Infiltration of water through the soil ?

Time	% Removal	
20.01.2015-17.02.2015	16	
17.02.2015-03.03.2015	21	
03.03.2015-17.03.2015	20	
17.03.2015-31.03.2015	9	
31.03.2015-14.04.2015	6	
14.04.2015-28.04.2015	16	
28.04.2015-12.05.2015	38	
12.05.2015-28.05.2015	52	
28.05.2015-11.06.2015	62	
11.06.2015-17.06.2015	72	
Total	30	

Conclusions

- Increase the benefits per unit space via effectively spatial targeting of use of riparian zones enhancing natural processes using ecotechnologies – buffer strips, restored wetlands, comstructed wetlands, IBZ's, etc..
- Buffer strips serve multiple ecosystem services but they need to be implemented based on local knowledge and needs.
- They work for both sediment, nitrogen, phosphorus, pesticides and biodiversity – but local management will often be necessary to fully optimize their ecosystem services such as e.g. construction of IBZ's for enhancing

Thank you for your attention!

Acknowledgements: The BUFFERTECH project (www.buffertech.dk)

The BalticSea2020 project

Danish Council for Strategic Research