

AARHUS UNIVERSITY DEPARTMENT OF BIOSCIENCE, RKS

LUWQ 2015, ABSTRACT NR. 127

A new monitoring approach in streams for detection of N emissions from agricultural areas to surface waters

J. R. Poulsen, N. B. Ovesen, H. Tornbjerg, S. E. Larsen, J. Windolf, S. K. Hvid, K. Piil, B. Kronvang

MOTIVATION

 Denmark has successfully reduced N emissions from diffuse sources to surface waters with app. 40% (ca. 30,000 t) since 1990 by general regulations in agricultural production.

> BUT a further reduction amounting to 7,800 tonnes N is required for WFD II → calls for new approaches for regulations of agricultural N-emissions !

OBJECTIVES

Develop a monitoring design that can constitute the basis for regulation of nutrient emissions to surface waters at **micro catchment scale**

- i) Design a stream monitoring program, to quantify N emissions at micro catchment scale (10 - 30 km²).
- ii) Test the monitoring design by intensive N and discharge measurements

in three pilot catchments for a three year period.

SELECTION OF CATCHMENTS SUITABLE FOR N-EMISSION REGULATIONS

- > Three overall factors chosen:
- Increase in runoff across catchment
- > Travel time, oxidized gw particles
- > Retention sinks (wetlands, lakes, streams)
- > DK subdivided into catchments app. 15 km²

INCREASE IN RUNOFF ACROSS CATCHMENT

- $\rightarrow \Delta Q = outflow inflow$
- Data comes from the national rainfall-runoff model

Green = 88%

∆Q → ongoing analysis to decide when ∆Q is large enough to be detected with reasonable (?) uncertainty

TRAVEL TIME, OXIDIZED GW PARTICLES

- Number of years it takes for 90% of the oxidized gw particles to travel from the root zone to the stream.
- Based on results from a new national N retention map.

N-RETENTION SINKS (WETLANDS, LAKES, STREAMS)

- Percentage of N retention within each 15 km² catchment
- Based on model estimates from a new national N retention model

Green = 86%

"TRAFFIC LIGHT" MAP

Preliminary subdivision of Denmark, into areas suitable for stream monitoring.

Green = Suitable (65%)Yellow = Possibly suitable Red = Not suitable

	Total retention in	Transport time for	Increase in runoff
	catchment surface	oxidized water	across catchment
	waters (%)	(groundwater) (yr)	(%)
Red	>20	>3	<5

3-б

<3

5-10

>10

Yellow

Green

10-20

<10

Table 1. Criteria that form the background for construction of the map in Fig. 1.

HOW TO DESIGN THE MONITORING PROGRAMS?

 The design of monitoring program is expected to be highly influenced by hydraulic regime (HR).

$$HR = Q_{max}/Q_{min}$$

 Monthly estimated Q_{max} and Q_{min} values 1990-2010

Jane Rosenstand Poulser

PRELIMINARY RESULT®QQ RELATIONS500

- Q measurements at main stations and up-stream stations
 - a) Not drained catchment
 - b) Systematically drained catchment

PRELIMINARY RESULTS N CONCENTRATIONS

- TN concentrations at main stations (daily) and up-stream stations (weekly)
 - a) Not drained catchment
 - b) Systematically drained catchment

CONCLUSION

- A concept for the design of monitoring of agricultural N-emissions are being drawn as a guideline for farmers.
- Preliminary results show that 65% DK area will potentially be suitable for a stream monitoring program.
- Sampling and data analysis continues in the coming 3 years including a model component.
- The future regulation of N-emissions from Danish agriculture will surely change in the coming years – but where to ?

Thank you for your attention!

This project was co-financed by the Green Development and Demonstrations program under the Ministry for Food, Agriculture and Fisheri

