

an and the second of all the loss of

Deltares

Enabling Delta Life

Biogeochemical and hydrological controls on P retention

Bas van der Grift (Deltares/Utrecht University

Jasper Grifficen (TNO/Utrecht University)

Leonard Osté (Deltares)

Martin Wassen (Utrecht University) Paul Schot (Utrecht University)

Phosphorus in surface water

Phosphorus in Hunze

Data WSHA

P-total in unfiltered samples: common practice in surface water monitoring

Universiteit Utrecht

Phosphorus in surface water

Phosphorus in Hunze

Phosphorus in surface water

Phosphorus in Hunze

Observation 2:

low dissolved concentrations

Particulate P inorganic P?

organic P?

P speciation in surface water: samping in three areas:

Hunze catchment

Haarlemmermeer polder

Deltares

Van der Grift et al., 2015; in prep.

Samping in three areas: particulate P and dissolved P

0.3 0.2 0.1

0.0

PLS1 PLS2 SLT1 SLT2 SLT3 SLT3 SLT4 SLT4 SLT5 XNP1 STW1 STW3

STW2

STW5 STW6

STW4

STW8

XSLT1 NPY1

STW7

PLS5

PLS3 PLS4

Deltares

Suspended sediment samples

Hunze

Haarlemmermeer

Universiteit Utrecht

Sequential extraction: P fractionation in suspended sediment

Hunze catchment

Haarlemmermeer

Why dominance of Fe bound P?

Lowland area: reactive subsurface with high organic Iron in shallow groundwater (8-10 m depth) matter content

- anaerobic groundwater
- high iron(II) concentration
- contributes to surface water

So, high load of iron(II) to surface water system

- 1: Oxidation iron(II) with oxygen to Fe hydroxides $Fe^{2+} + 0.25 O_2 + 2.5 H_2O \rightarrow Fe(OH)_3 + 2H^+$
- 2: Phosphate: strong affinity with Fe hydroxides:

Surface adsorption on Fe-hydroxides surfaces $\equiv XOH_2^+ + HPO_4^{2-} \rightarrow \equiv XOH_2 HPO_3^- + H_2O$

Precipitation Fe phosphate phases $Fe(OH)_3 + PO_4^{3-} \rightarrow FePO_4 + 3OH$

Deltares

Fe and P dynamics in at the groundwater – surface water interface

Hupsel brook field experiment

Dissolved total P concentrations in Hupsel catchment

Van der Grift et al., 2014; HESS.

Fe²⁺ oxidation experiments in presence of PO

Reactor to oxidize Fe²⁺ under controlled conditions:

- Fixed pH
- Fixed O₂ concentrations

P/Fe initial ratio = 0.18 pH=6.1 & O₂=10.5mg/l 200 1.0 Fe^{2+} from NaOH addition; $H^+/Fe^{2+} = 1.55$ Fe^{2+} from NaOH addition; $H^+/Fe^{2+} = 1.89$ 0.9 Fe²⁺ extraction 160 0.8 PO₄ from NaOH & solid P/Fe = 0.41 Fe(II) & PO₄ (µmol/l) 8 05 PO₄ extraction 0.7 P/Fe ratio precipitates D/Fe ratio P/Fe ratio 0.3 0.2 40 ← PO4 depletion 0.1 -0.0 0 1000 500 1500 2000 2500 3000 time (min)

PO₄ depleted:

Deltares

Fast binding of PO_4 during oxidation of Fe²⁺:

- No time for dissolved P transport

PO₄ present:

Conceptual model of abiotic in-stream processes influencing phosphate transport

Inspiration from continuous water quality / sediment measurements

eltares

Effect of flow velocities on re-suspension bed sediments and particulate P in polder catchment

10 minute interval measurements

- Suspended sediment (Turbidity)
- Total-P and total reactive P
- NO₃
- conductivity

Blocq van Kuffeler pumping station

High-Frequent monitoring at pumping-station in Flevoland

October 2014 – April 2015

Deltares

Response on pumping: increase of TP

Total-P

Total P remoblisation: natural catchment vs polder

Conclusions & questions left

- Fe-bound P is dominant P species in surface water in agricultural lowland areas
- Seepage of anaerobic groundwater controls P speciation in surface water
- Fast immobilization of P during oxidation process of Fe(II)
 - Precipitation of Fe hydroxyphosphate phase
 - How stable are these mineral phases?
 - Bioavailability?
- Flow induced resuspension of streambed sediment is main transport mechanism for P
 - Are natural catchments much more vulnerable for incidental losses than polder??