

Peter Schipper, Caroline van der Salm, Harry Massop, Piet Groenendijk, Leo Renaud, Rob Hendriks, Harry Massop, Dennis Walvoort

----- What I learnt since 2009

WFD harmonizes water quality objectives, ...

But does not harmonize the effort to meet these!

NL: 2nd largest producer agri-products

- Export Agro products ≈ 80 billion euro (20 % of total)
- 1 out of 10 jobs

Livestock: \approx 4.106 cattle

≈ 12.106 pigs

≈ 103.106 poultry

Greenhouses: ≈ 10.000 ha

Open air Horticulture: 45.000 ha (flowers, fruit)

Manure, Chemical Fertilizers, Pesticides

Diffuse Pollution

----- What I learnt since 2009

Nitrate Directive

EU:s Nitrate directive

Establish a Code of Good Agricultural Practice The objective of reducing nitrate pollution should cover:

- periods when the land application of fertiliser is inappropriate;
- the land application of fertilisers to steeply sloping ground;
- the land application of fertiliser to water-saturated, flooded, frozen or snow-covered ground;
- the conditions for land application of fertiliser near water courses;
- the capacity and construction of storage vessels for livestock manure, including measures to prevent water pollution by run-off and seepage into the groundwater and surface water of liquids containing livestock manure and effluents from stored plant materials such as silage;
- · procedures for the land application, including rate and uniformity of spreading, of both chemical fertiliser and livestock manure, that will maintain nutrient losses to water at an acceptable level

is <u>NOT</u> the vehicle to enforce measures needed for good <u>Surface</u> Water quality

Use the WFD!

How experts from other countries think of NL:

Conclusions

NL has made much progress in policy implementation, but much

- Water quality results: there is yet a long way to go!
 - Pressures from agriculture, urbanisation, emerging chemicals and climate change high in the Netherlands - extraordinary pressures require extraordinary efforts and better integration
- Climate change and land use beginning to be tackled: work of the Delta Commission, implementation of the Floods Directive and energy efficiency in the water industry, biodiversity strategy - but more needs to be done, especially in agriculture
- To do this: also need for streamlining governance structures, better use of economic instruments and development of innovative solutions, cfr. also OECD peer review in 2013

----- What I learnt recently ------

Mitigation options can reduce diffuse P-loads significant

4

Policy NL to reduce N & P Agri-emissions

1) Restrictions Fertilizers (NAP)

2) Manure Treatment

3) Tailor made voluntary mitigation options

Research question: Tailor made P-options: where effective?

- 5th Nitrate Action Plan
- P-mining agricultural soils
- Control Drainage
- Solve soil compaction
- ...

3) Tailor made voluntary mitigation options

Method:

Downscaling National model STONE using PLEASE

STONE: process based dynamic model

PLEASE: conceptual static model

ANIMO, the unique module in STONE

PLEASE: using maps Pw and groundwater level combination STONE: P-loads to surface water

PW-map

current P-loads surface water

effect 5th NAP

STONE: derivation meta relationships measures PLEASE: downscaling effect measures

Meta Relations

Effect control Drainage

most effect measure

Change in P emission(kg/ha)

P-mining quite 'drastic'

But most of the P loads originate from a short distance (5 m) to de ditch

Conclusions

- 5th Nitrate Action Programme: limited effects P-loads
- Large differences in effects mitigation options (kg, spatial)
- P-mining and Control Drainage can be very effective
- Many parcels in NL: risks for rapid surface runoff

Bear in mind:

- P-mining quite ' drastic'
- Control drainage depends on configuration
- Solve compaction = win-win Farmer & Water Quality
- Tailor Made solutions → Tailor Made Support at farm level

Legend **Leaching distance** xp in m. 0 - 2.52.5 - 5 10 - 15 5 m

Bear in mind:

P-mining quite ' drastic'

But most P loads originate in many places < 5 m from the ditch

Conclusions

- 5th Nitrate Action Programme: limited effects P-loads
- Large differences in effects mitigation options (kg, spatial)
- P-mining and Control Drainage can be very effective
- Many parcels in NL: risks for rapid surface runoff

Bear in mind:

- P-mining quite ' drastic'
- Control drainage depends on configuration
- Solve compaction = win-win Farmer & Water Quality
- Tailor Made solutions → Tailor Made Support at farm level

