

INDIRECT NITROGEN LOSSES OF MANAGED SOILS CONTRIBUTING TO GREENHOUSE GASES EMISSIONS OF AGRICULTURAL AREAS IN AUSTRIA OR

HOW WE CALCULATED THE FACTOR FRAC LEACH

A. Eder, F. Feichtinger, G. Blöschl, P. Strauss,

With support from

M. Herndl, G. Klammler, J. Hösch, E. Erhart

BACKGROUND

- The Kyoto protocol asks for legally binding reductions in national greenhouse gas emissions
- Special emphasis on N₂O (global warming potential 296 times of CO₂)
- Main sources of N₂O emissions are agriculture, forestry and other land uses (59% of total N₂O emissions) but only 9.1% of total greenhouse gases are emissions from agriculture, forestry and other land uses
- Annual national inventory reports must be compiled using methodology according to IPCC guidelines (IPCC, 2006)
 - CO₂
 - Other gases than CO₂ (N₂O)
 - Direct emissions from managed land
 - Indirect emissions from managed land
 - √ Volatilisation
 - ✓ Leaching

The IPCC 'Tier 1' method

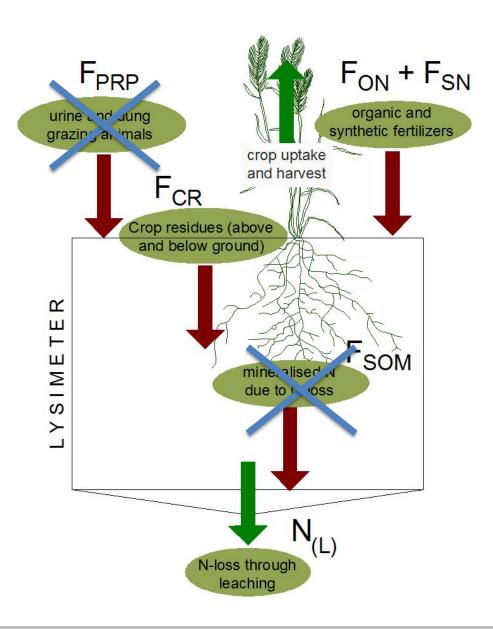
$$N_2O_{(L)}-N=(F_{SN}+F_{ON}+F_{PRP}+F_{CR}+F_{SOM})\cdot Frac_{LEACH}\cdot EF_5$$

 $N_2O_{(L)}-N$ = annual amount of N_2O nitrogen by leaching and runoff of nitrogen additions to managed soils (kg·yr⁻¹)

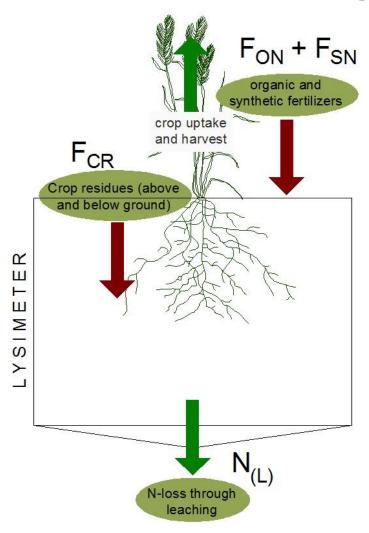
F_{SN} = annual amount of synthetic fertilizer nitrogen applied to soils (kg·yr⁻¹)

 $\mathbf{F_{ON}}$ = annual amount of managed animal manure, compost, sewage sludge and other organic nitrogen additions applied to soils (kg·yr⁻¹)

F_{PRP} = annual amount of urine and dung nitrogen deposited by grazing animals (kg·yr⁻¹)


 \mathbf{F}_{CR} = amount of nitrogen in crop residues (above and below ground, including nitrogen fixing crops, and from forage/pasture renewal, returned to soils annually (kg·yr⁻¹)

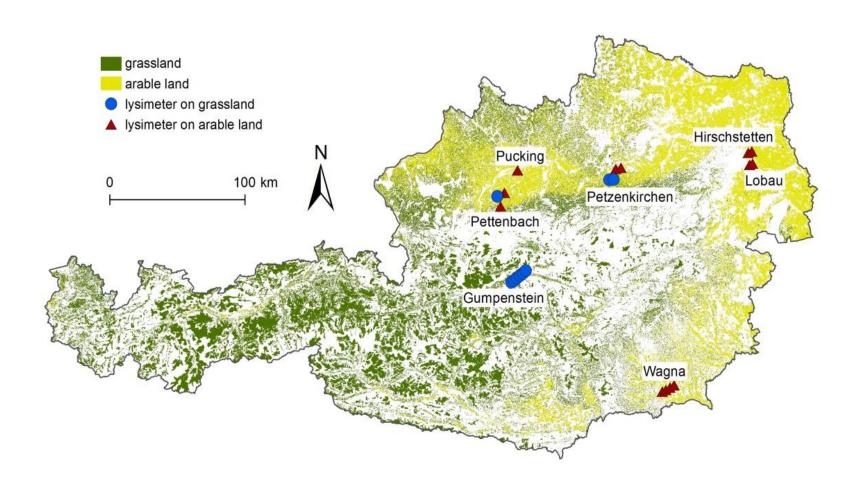
 \mathbf{F}_{SOM} = annual amount of nitrogen mineralised in soils associated with loss of soil carbon from soil organic matter as a result of changes in land use or land management (kg·yr⁻¹)


Frac_{LEACH} = fraction of all nitrogen added to or mineralised in managed soils that is lost through leaching and runoff (kg·kg⁻¹)

 $\mathbf{EF_5}$ = emission factor for N₂O emissions from nitrogen leaching and runoff (kg·kg⁻¹)

The IPCC 'Tier 1' method as graph (I)

The IPCC 'Tier 1' method as graph (II)


$$Frac_{LEACH} = N_{(L)} / (F_{SN} + F_{ON} + F_{PRP} + F_{CR} + F_{SOM})$$

Some values presently used for Frac_{LEACH}

Default value for $Frac_{LEACH}$ (IPCC) = 0.3

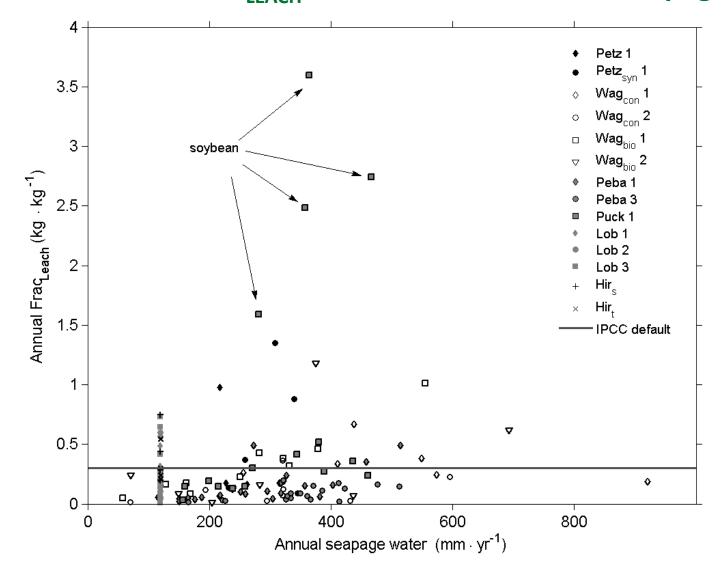
Country	Frac _{LEACH}
Belgium	0.12
Canada	0.18
Finland	0.15
Ireland	0.10
Kazakhstan	0.06
Liechtenstein	0.20
Netherlands	0.12
New Zealand	0.07
Norway	0.18
Slovakia	0.14
Switzerland	0.20
Ukraine	0.21

Lysimeter sites and distribution of agricultural land use in Austria

Necessary steps for a joint analysis

Correcting for type, size and depth of lysimeter

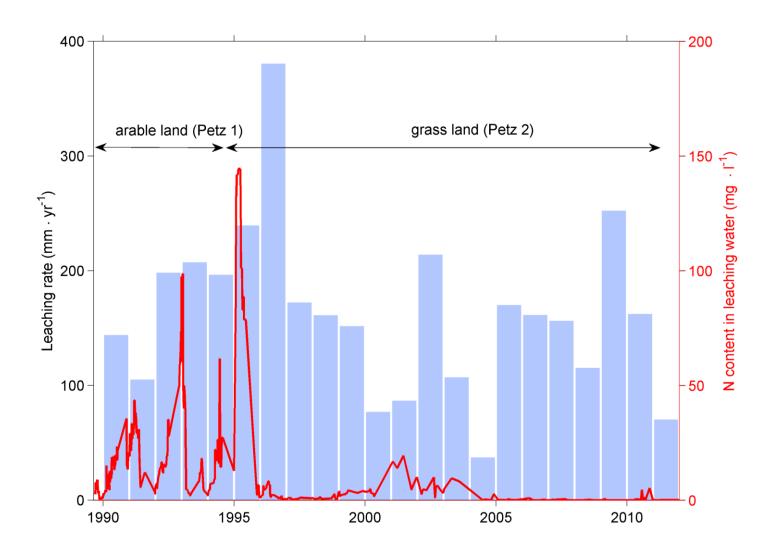
Example: gravity lysimeters yield different amount of seepage water compared to lysimeters with suction rack


Dealing with missing data

Example: No data available, therefore calculation of below ground plant residues according to IPCC as a fraction of yield

Nitrogen losses through leaching, nitrogen sources and values for Frac_{LEACH} on arable sites

site	N _{(L)_tot} kg N · ha ⁻¹	F _{SN_tot} kg N⋅ha ⁻¹	F _{ON_tot} kg N⋅ha ⁻¹	F _{CR_tot} kg N⋅ha ⁻¹	Frac _{LEACH_tot}	Frac _{LEACH_mean}	std. dev. -	n
Petz 1	225	908	366	357	0.138	0.288	0.390	5
Petz _{syn} 1	278	0	506	398	0.307	0.565	0.541	5
Wag _{con} 1	638	1608	0	910	0.253	0.261	0.172	10
Wag _{con} 2	164	548	476	1151	0.075	0.121	0.120	8
Wag _{bio} 1	818	1370	293	1077	0.299	0.330	0.278	10
Wag _{bio} 2	270	0	0	1625	0.166	0.309	0.398	8
Peba 1	479	1571	769	1552	0.123	0.153	0.147	18
Peba 3	301	116	1888	1568	0.084	0.088	0.059	18
Puck 1	815	725	793	885	0.921	0.832	1.126	16
Lob 1	183	0	0	1041	0.176	0.207	0.151	13
Lob 2	248	0	285	929	0.204	0.230	0.173	13
Lob 3	241	302	0	1087	0.173	0.240	0.230	13
Hirs	168	0	311	156	0.359	0.416	0.241	4
Hirt	163	0	373	203	0.282	0.320	0.152	4


Annual values of Frac_{LEACH} as a function of annual seepage water

Nitrogen losses through leaching, nitrogen sources and values for Frac_{LEACH} on grassland sites

site	N _{(L)_tot} kg N⋅ha ⁻¹	F _{SN_tot} kg N⋅ha ⁻¹	F _{ON_tot} kg N⋅ha ⁻¹	F _{CR_tot} kg N⋅ha ⁻¹	Frac _{LEACH_tot}	Frac _{LEACH_mean}	std. dev. -	n
Petz 2	36	0	0	2279	0.016	0.018	0.015	6
Petz _{syn} 2	18	0	0	1753	0.011	0.010	0.011	4
Peba 2	121	955	597	708	0.054	0.057	0.033	6
Gump 1	3	120	0	201	0.011	0.010	0.012	3
Gump 2	5	238	0	327	0.008	0.007	0.009	3
Gump 3	23	214	0	319	0.043	0.038	0.053	3
Gump 4	4	311	0	377	0.006	0.006	0.002	3
Gump 5	13	409	0	331	0.017	0.018	0.004	3

The grassland effect for leaching

Adding runoff

No measurements available – Data from simulation study on national balances of nitrogen input into rivers (BMLFUW, 2011) = 30 % addition for nitrogen in runoff, includes

- emissions from non agricultural land
- denitrification losses

Upper boundary

CONCLUSIONS

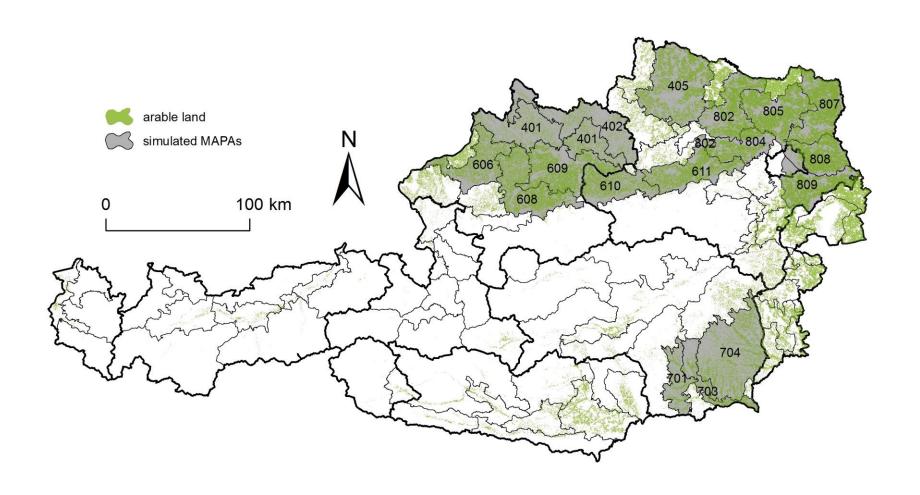
Mean values for Frac_{LEACH} (only leaching) and modified Frac_{Leach}* (leaching and runoff) of all arable and grassland sites estimated from lysimeter data

	Frac _{LEACH}	Frac _{LEACH} *
arable land	0.254	0.277
grassland	0.021	0.027
Austria overall	0.135	0.150

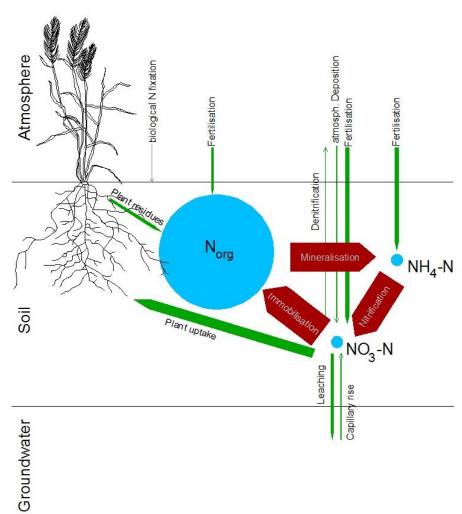
Nutr Cycl Agroecosyst (2015) 101:351–364 DOI 10.1007/s10705-015-9682-9

ORIGINAL ARTICLE

Indirect nitrogen losses of managed soils contributing to greenhouse emissions of agricultural areas in Austria: results from lysimeter studies


Alexander Eder • Günter Blöschl • Franz Feichtinger • Markus Herndl • Gernot Klammler • Johannes Hösch • Eva Erhart • Peter Strauss

Received: 18 August 2014/Accepted: 11 February 2015/Published online: 19 February 2015


© The Author(s) 2015. This article is published with open access at Springerlink.com

ONGOING

Application of model simulations for the main arable areas in Austria

Processes and intensities of the nitrogen cycle considered in STOTRASIM

transport = green transformation = red

arrow width = mean annual nitrogen transport or transformation rate cycles area = dimension of the nitrogen source

Mean values for Frac_{LEACH} (only leaching) and modified Frac_{Leach}* (leaching and runoff) of all arable and grassland sites estimated from lysimeter data

	FracLEACH	FracLEACH*
Arable land	0.156	0.203
Grassland	0.021	0.027
Austria overall	0.087	0.113

Thank you for your attention

Peter Strauss, Alexander Eder, Franz Feichtinger

Institute for Land and Water Management Research Federal Agency for Water Management Petzenkirchen

Günter Blöschl

Institute of Hydraulic Engineering and Water Resources Management Technical University Vienna