

Nutrient exchange between surface water and shallow groundwater and **degradation pathways** of nitrogen species in the North China Plain

B. Brauns, P.L. Bjerg, X. Song, R. Jakobsen LuWQ 2015 - 21 September 2015

Chinese Academy of Sciences Institute of Geographic Sciences and Natural Resources Research

1.1 Introduction: Agriculture in the North China Plain (NCP)

Result: Water scarcity and pollution in surface water (SW) and groundwater (GW)

1.2 Study aims

Study area: Typical wheat-maize field with SW-GW interaction

Study aims:

1) Describe local flow dynamics and solute transport

- 2) Assess **temporal water quality changes** regarding inorganic water chemistry and nitrogen
- 3) Evaluate **dominant processes of nutrient removal**, using geochemical modelling with **PHREEQC**

1.3 Setup and sampling

<u>Study area:</u> Typical wheat-maize field with SW-GW interaction ⇒ near Baiyangdian Lake, Hebei Province

₩

1.3 Setup and sampling

 \oplus

<u>Study area:</u> Typical wheat-maize field with SW-GW interaction ⇒ near Baiyangdian Lake, Hebei Province

Soil water samplers (SoilW)

DTU Environment Department of Environmental Engineering

Chinese Academy of Sciences

Institute of Geographic Sciences and Natural Resources Research

1.3 Setup and sampling

Sampling period: April 2013 to April 2014 (9 sampling campaigns)

2.1 Water flow and contaminant mass transfer

Horizontal flow

- Hydraulic heads
- Movement of Br-tracer into the field
- Temperature gradient
- Similarity of H and O isotopic signature
- Same water type in SW, HZ, GW
- \Rightarrow SW and GW are very well connected
- \Rightarrow Contaminants are transferred from SW into GW

Vertical flow

Br applied on surface reaches GW after few months High nitrate concentrations in SoilW after fertilization

- Much faster than expected for silty clay loam
- Macropore flow must take place
- \Rightarrow Nitrate leaching from the field into GW

<u>Nitrate:</u> SoilW up to 134.8 mg/L NO₃-N => indicates leaching, most NO₃ at GW4

<u>Ammonium</u>: High in SW, low in GW => effective ammonium removal in GW!

DTU Environment Department of Environmental Engineering

2.3 Redox conditions and suggested removal pathways for nitrogen

- > HZ strongly reducing
- > GW slightly reducing

Suggested removal mechanisms:

Nitrate: Denitrification (slightly reducing conditions, OM), DNRA, anammox? **Ammonium:** Cation exchange (CE) with clay minerals, anammox?

2.4 PHREEQC modelling - part 1

Build up of nitrate along the flow after ammonium is removed **=>Influence of SW quality on nitrate degradation?**

8.0

<u>Modelled period:</u> March to September 2013

Included processes:

- Cation exchange
- Equilibrium for calcite, carbon dioxide, and iron(II)sulfide
- Redox processes
- De-/nitrification
- > Anammox

Nitrate pattern well reflected after it was "allowed to react" with ammonium

Calc. values ■ Inflow into model cell 1 ◆/◇ Meas, value HZ Line A/B ◆/◇ Meas, value GW Line A/B

GN.

Institute of Geographic Sciences and Natural Resources Research

=>Nitrate levels might increase if ammonium input into the river is reduced

<u>Comparison:</u> Previous model compared to model with reduced ammonium inputs

Chinese Academy of Sciences

Institute of Geographic Sciences and Natural Resources Research

- > SW transports pollutants into shallow GW in the BYD area
- The soil system has a good ability to degrade/remove nitrogen, but nitrate is building up at least to some extend
- > Nutrient inputs at the field site are excessive
- Anammox seems to take place not only in the riparian zone, but also in GW
- SW and GW should be treated as one resource and be monitored with the same monitoring scheme to be able to predict changes

THANK YOU FOR YOUR ATTENTION

DTU #

THANKS!!!

