

Modelling nutrient emissions in freshwater at different scales and for different objectives

Chantal Gascuel-Odoux, Rémi Dupas, Patrick Durand, Pierre-Louis Legeay, Florentina Moatar, Pierre Moreau, Laurent Ruiz, Jordy Salmon-Monviola UMR1069, Soil Agro and hydrosystem, Rennes, France

1. Agrohydrological modelling

- Heuristic perspective, large variability of model structure depending on objectives
 - To estimate the distribution of the transit time, or the retention for example.
- Operational perspective, as decision support tools
 - To test innovative scenarios of agricultural changes and contribute to defining a strategic vision for a catchment.

2. Casimod'N, a model to test changes in farming systems in a consistent way

- Feeding the cows to sustain milk production (main income)
- Being able to manage animal waste according to regulations
- Sustain the economic margin by compensating every loss of income by a decrease in charges

- Design simple indicators to set objectives and guide the changes
 - Explain the rationale and the feasability of the objectives
- Find voluntary farmers to implement changes in real farms
- Assess, with the model, what would be the impact of generalising the changes to all the farms in the catchment (« what if » scenario).

Next iteration.

The model outputs suggest a 20% reduction in stream nitrate fluxes without affecting milk production.

3. Nutting-N and P models at regional and national scale for defining areas at risk

 $TP Load = (B * Ptopsoil + Ppoint) - retention_{benthic}$ $\overline{TN Load} = (\underline{B} * Nsurplus + Npoint) * \underline{R} - denit_{benthic}$

Nutting'N model

- A database of 160 headwater catchments and their attributes
- Attributes characterize N & P agricultural pressures and transfer variables (climate, soil, IDPR connectivity index, river geometry)

N Loads

- Model fit (leave-one-out cross validation)
- Total-N: R²=0,59 (specific load) & 0,85 (global load)
- Total-P: R²=0,40 (specific load) & 0,70 (global load)

Agriculture contributes to 97% total-N load and 46% total-P load (national mean)

- A typology of agricultural systems, as input
- Ratio of types of systems per catchment
- Assess, with the model, what would be the impact of generalising the changes in farming systems (« what if » scenario).
- Next iteration

Thanks to Onema (national water agency) and French water Agencies

The challenge of such models is to take into account a typology of agricultural and environmental systems so that scenarios can be easily and relevantly tested.

- Bergez, J.E.; Chabrier, P.; Gary, C.; Jeuffroy, M.N. et al. 2013. An open platform to build, evaluate and simulate integrated models of farming and agro-ecosystems. Environmental Modelling & Software. 39, 39-49.

 Dupas, R.; Delmas, M.; Dorioz, J.M.; Garnier, J.; Moatar, F.; Gascuel-Odoux, C. 2015. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators. 48, 396-407.

 Dupas, R.; Parnaudeau, V.; Reau, et al., C. 2015. Integrating local knowledge and biophysical modeling to assess nitrate losses from cropping systems in drinking water protection areas. Environmental Modelling & Software. 69, 101-110

 Dupas, R.; Curie, F.; Gascuel-Odoux, C.; Moatar, F.; Delmas, M.; Parnaudeau, V.; Durand, P. 2013. Assessing N emissions in surface water at the national levei: Comparison of country-wide vs. regionalized models. Science of the Total Environment. 4

 Durand, P.; Moreau, P.; Salmon-Monviola, J.; Ruiz, L.; Vertès, F.; Gascuel-Odoux, C. 2015. Modelling the interplay between nitrogen cycling processes and mitigation options in farming catchments. The Journal of Agricultural Science. 153 (06), 959Moreau, P.; Ruiz, L.; Vertès, et al., 2013. CASIMODYN: An agro-hydrological distributed model of catchments-air introgen dynamics integrating farming system decisions. Agricultural Systems. 118, 41-51.

 Moreau, P.; Ruiz, L.; Mabon, F.; Raimbault, T. et al., 2012. Reconciling technical, economic and environmental efficiency of farming systems in vulnerable areas. Agriculture, Ecosystems & Environment. 147, 89-99.