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Abstract

Lankesterella parasites are blood coccidians that have recently gained attention as their records in common passerine spe-
cies emerge. To date, their occurrence has been molecularly confirmed in several passerine genera, mainly among members of
the families Paridae and Acrocephalidae. Despite their relatively high prevalence in some host populations, their life cycles
remain unclear, mosquitoes or mites being the proposed vectors. The aim of this study was to reveal Lankesterella host speci-
ficity, focusing mainly on parasites of tit and warbler species (families Paridae and Acrocephalidae). We have determined the
18S rRNA gene sequences of Lankesterella from 35 individuals belonging to eight different host species. Phylogenetic anal-
ysis revealed that passerine Lankesterella are host-specific, with specificity at the host genus or species level. Besides Lan-
kesterella, Isospora sequences were obtained from avian blood as well, pointing out the need for barcoding.
� 2023 Elsevier GmbH. All rights reserved.
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Introduction

Avian blood protists are well known yet unevenly stud-
ied parasites. Among the apicomplexan blood parasites,
the genus Lankesterella Labbé, 1899 is perhaps the most
neglected, but it is recently gaining attention (Biedrzycka
et al. 2013; Chagas et al. 2021a; Merino et al. 2006). Lan-
kesterella belongs to true coccidians (Lankesterellidae,
Eucoccidiorida, Apicomplexa; Adl et al. 2019) and is tradi-
tionally placed to the family Lankesterellidae, together with
the genus Schellackia Reichenow, 1919. However, phyloge-
netic studies revealed that the two genera are not closely
related to each other (Megía-Palma et al. 2017).
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Members of Lankesterella are known to infect reptiles
and amphibians (Desser 1993), but recent findings suggest
that avian infections are not an exception (Chagas et al.
2021a). Interestingly, the blood stages of avian extraintesti-
nal coccidians, previously assigned to Hepatozoon genus
(Bennett and Peirce, 1989; Biedrzycka et al. 2013;
Kruszewicz and Dyrcz, 2000) were shown to be closely
related to a frog species, Lankesterella minima based on
molecular barcoding of 18S rDNA gene (Merino et al.
2006). Passerines known to host Lankesterella, as con-
firmed by molecular barcoding, now include two species
of tits – Blue Tit and Great Tit (Cyanistes caeruleus and
Parus major; Bennett and Peirce 1989; Chagas et al.
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2021a; Merino et al. 2006), five warbler species – Sedge,
Marsh, Reed, Great Reed and Icterine Warblers (Acro-
cephalus spp. and Hippolais icterina; Biedrzycka et al.
2013; Chagas et al. 2021a; Kruszewicz and Dyrcz 2000),
Snow Bunting (Plectrophenax nivalis; Martínez et al.
2018), Common House Martin (Delichon urbicum;
Bennett and Peirce 1989; Chagas et al. 2021a), and Eurasian
Blackbird (Turdus merula, Chagas et al. 2021b; Kučera
1982). The number of hosts is probably underestimated
since other records of morphologically similar parasites
can be found in literature, and at least some of them prob-
ably represent Lankesterella as well (Bennett and Peirce,
1989; Bennett et al. 1992; Desser 1993; Kučera 1982).

The life cycle of avian Lankesterella is poorly known;
most of the information about their life cycle was obtained
while studying amphibians and reptiles (Desser 1993).
These parasites are heteroxenous and their infective sporo-
zoites, circulating in blood cells, are taken up by bloodsuck-
ing invertebrates (mites, ticks, leeches), but no
multiplication in the vector was observed. Merogony, game-
togony, and sporogony take place in the liver and gut of the
vertebrate, which is unique among coccidians (Desser 1993;
Levine 1982a, b). Transmission to the vertebrate host occurs
by ingestion of the vector (Desser 1993). Due to the lack of
replication of the parasites, the vectors are sometimes called
paratenic hosts (Tse et al. 1986), which is perhaps not appro-
priate since they are necessary for transmission. Vectors
responsible for transmission of avian species remain
unknown, although Lainson (1959) suggested mites as vec-
tors of a putative Lankesterella from sparrows. However, the
identity of the parasite remains controversial (Box 1970).
Mosquitoes are another putative vectors, and Lankesterella
life stages survived in mosquitoes fed on naturally infected
passerines; although transmission to experimental birds
was unsuccessful (Chagas et al. 2021a).

Species of Lankesterella described from birds that have
been sequenced and whose SSU rRNA gene sequences are
available in GenBank include Lankesterella macrovacuolata
from theGreat Tit (Chagas et al. 2021a),Lankesterella vacuo-
lata from the Common House Martin (Chagas et al. 2021a),
Lankesterella kabeeni from Sedge Warbler (Chagas et al.
2021a; Kruszewicz andDyrcz, 2000), Lankesterella bivacuo-
lata from Eurasian Blackbird (Chagas et al. 2021b); Lankes-
terella valsainensis, occasionally used for lineages from Blue
Tit, is probably an invalid name (Chagas et al. 2021a).

To shed light on the diversity and, potentially, the trans-
mission of Lankesterella species, knowledge of their host
specificity is needed. To achieve this, we focused on three
tit species, Blue Tit (C. caeruleus), Great Tit (P. major),
and Marsh Tit (Poecile palustris), and three warbler species:
Marsh Warbler (A. palustris), Reed Warbler (A. scirpaceus),
and Sedge Warbler (A. schoenobaenus) that occur sympatri-
cally. We also included available occasional findings from
other passerine hosts such as Eurasian Jay (Garrulus glan-
darius) and Starling (Sturnus vulgaris) with the aim to reveal
host-parasite relationships and host specificity of avian
Lankesterella.

Material and methods

Bird trapping and sampling

Common passerine species were trapped during the
breeding season (May-July) from 2014 to 2021, at several
localities in Czechia, namely, Zeměchy (50.230346,
14.267905), Choteč (49.989565, 14.282534), Tisý
(49.056739, 14.724126), and Milovický forest
(48.808441, 16.648047). Adults and yearlings were caught
using mist nets and were sampled using a tuberculine syr-
inge. Blood was drawn from the metatarsus vein articulation
(vena metatarsalis plantaris superficialis media); a drop of
blood was used to prepare a blood smear, and 10–20 lL of
blood was stored in 96% ethanol for further use.

Animal experimentation guidelines

All experiments were performed by licensed workers.
Birds were trapped and identified by licensed ringers; blood
was sampled by people certified for experimentation with
animals by the Ministry of Agriculture of the Czech Repub-
lic. Blood sampling was approved by the Committee on the
Ethics of Laboratory Experiments of Charles University and
performed under the permissions 50982/ENV/14-
2961/630/14 and MZP/2019/630/1081 of the Ministry of
the Environment of the Czech Republic.

Microscopy

Blood smears were fixed with methanol usually the day
of sampling and stained with Giemsa (Sigma) according to
the manufacturer's instructions for 30 min. Smears were
microscopically checked with light microscope at 1000x
magnification for 10 min by a single person (MS). Blood
stages of Lankesterella were photographed at 1000x magni-
fication with a CDC camera (DP70) using an Olympus
BX51 microscope and light microscope.

DNA extraction, amplification, and sequencing

DNA was isolated using the High Pure PCR Template
Preparation Kit (Roche Diagnostic, Manheim, Germany)
according to the manufacturer´s protocol. A specific nested
PCR protocol was developed to amplify an approximately
1300 bp-long fragment of the 18S ribosomal RNA gene
of Lankesterella. The first PCR step was performed in the
final volume of 16 mL: 7 mL of PCR H2O, 7 mL of PCR
mix (PrimeSTAR Max DNA Polymerase Master Mix,
TaKaRa, Shiga, Japan), 0.5 mL of primers EF (50-GAAAC
TGCGAATGGCTCATT-30) and ER (50-CTTGCGCCTAC
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TAGGCATTC-30) (10 mM concentration) (Kvičerová et al.
2008), and 1 mL of DNA. The PCR conditions were as fol-
lows: initial denaturation temperature at 98 �C for 3 min,
denaturation at 98 �C for 10 sec, annealing at 55 �C for
20 sec, extension at 72 �C for 30 sec for 35 cycles, and final
extension at 72 �C for 5 min. The second PCR step was per-
formed in the final volume of 18 mL; 8 mL of PCR H2O,
8 mL of PCR mix, 0.5 mL primers Hep153F (50-GTAATTC
TATGGCTAATACATGCGC-30) and Hep1496R (50-TTAT
TGCCTCAAACTTCCTTGCG-30) (10 mM concentration),
which were newly designed using available sequences of
Lankesterella, and 1 mL of the initial PCR product. The
PCR conditions for the nested step was as follows; initial
denaturation temperature at 98 �C for 3 min followed by
the denaturation at 98 �C for 20 sec, annealing at 57 �C
for 30 sec, extension at 72 �C for 30 sec for 35 cycles,
and final extension at 72 �C for 5 min. PCR products were
analysed on 1% agarose gels, stained with SybrSafe, visual-
ized under UV light, purified using the ExoSAP-ITTM PCR
Product Clean up Reagent (ThermoScientific, Waltham,
MA, USA), and sequenced with the primer Hep153F using
Applied Biosystems� 3500 Genetic Analyzer at the core
facility of the Faculty of Science, Charles University. Avian
host DNA in the blood samples was barcoded as described
in Valinsky et al. (2014) to confirm the species identity of
Reed and Marsh Warblers.

Phylogenetic analysis

A data set containing 118 18S rRNA gene sequences was
used for the phylogenetic analysis, out of which 35 were
newly determined avian Lankesterella sequences. Four to
seven Lankesterella sequences from each model species
(three species of tits and three of warblers), occasional find-
ings from other hosts and all available avian Lankesterella
sequences from GenBank were used in the analysis. The rest
were Lankesterella sequences from non-avian hosts or other
closely related parasites such as Eimeria, Isospora, Caryos-
pora, and Schellackia. The sequences were aligned using
MAFFT with the G-INS-i algorithm (Katoh et al. 2002) on
the server https://mafft.cbrc.jp/alignment/software/. The
sequences were masked, and the alignment was slightly
trimmed using BioEdit 7.2.5. The final data set used for the
phylogenetic analysis consisted of 1864 positions. A maxi-
mum likelihood tree was constructed under GTRGAMMAI
model with 10 starting trees in RAxML v8.2.10
(Stamatakis 2014). Statistical support was assessed by 1000
bootstrap pseudoreplicates in RAxML. Sequences from
Eimeria and related generawere used as the outgroup (Fig. 1).

Results and discussion

We determined 44 new 18S rRNA gene sequences of
which 35 belonged to Lankesterella while nine belonged
to Isospora (Fig. 1). Seven of the new sequences that clus-
tered with Isospora were from Sedge, Marsh, and Reed
warblers and two sequences originated from Hawfinch
(Coccothraustes coccothraustes) and Chaffinch (Fringilla
coelebs), respectively (Fig. 1). The genus Lankesterella
appears to be monophyletic since sequences from avian,
amphibian, and reptile hosts clusters together although
without sufficient support. All Lankesterella sequences
from avian hosts cluster together forming an avian-
specific clade. Interestingly, a lineage from Bocage's wall
lizard (Podarcis bocagei) groups with the avian clade while
all other Lankesterella sequences from reptiles are separated
from the avian clade as shown previously (Chagas et al.
2021b). On the other hand, sequences originating from
the genus Schellackia form a separate clade together with
Eimeria sequences, thus supporting the non-monophyly of
the family Lankesterellidae (Megía-Palma et al. 2014).
The genus Caryospora seems to be non-monophyletic,
which is consistent with Chapman et al. (2016). The reduc-
tion of sporocyst number occurred probably several times in
coccidian evolution resulting thus in paraphyly of the genus
Caryospora and hence the inconsistencies in the phyloge-
netic tree (Megía-Palma et al. 2015).

Most of the avian Lankesterella sequences formed host-
specific clades. Interestingly, sequences obtained from the
three tit species, each belonging to a different genus of
the Paridae family, did not cluster together although they
formed genus-specific clades. On the other hand, all
sequences from Acrocephalus warblers clustered together.
Species identification of Reed and Marsh Warblers done
by ringers was confirmed by molecular barcoding; neverthe-
less, Lankesterella sequences from Reed and Marsh War-
blers do not show any host-specific pattern while
sequences from Sedge Warbler form a host-specific clade
within the warbler clade, however with low support. As
for the hosts, Common Reed and Marsh Warblers are more
closely related to each other than each to the Sedge Warbler
(Fregin et al. 2009); however, Lankesterella sequence from
the Great Reed Warbler clusters together with Reed and
Marsh Warbler sequences although the hosts are not so clo-
sely related. The sequence from Icterine Warbler (Hippolais
icterina) clustered with Acrocephalus lineages as well, rep-
resenting the only exception to the host specificity at the
species/genus level.

Previous studies on avian Lankesterella always worked
with a single avian host species (Sedge Warbler,
Biedrzycka et al. 2013; Snow Bunting, Martínez et al.
2018; Blue Tit, Merino et al. 2006). Recently, a wider host
range has been sampled, and several sequences from the
Acrocephalidae family (Acrocephalus scirpaceus, A. palus-
tris, A.schoenobaenus and A. arundinaceus) were compared
(Chagas et al. 2021a). In our study, we extensively sampled
not only warblers but also tits belonging to different genera.
Lankesterella parasites were suggested to be host-specific
on the family level (Chagas et al. 2021a); our data suggest
that members of Lankesterella are probably specific on the

https://mafft.cbrc.jp/alignment/software/


Fig. 1. Phylogenetic tree of avian Lankesterella spp. based on the 18S rRNA gene sequences. The tree was constructed by maximum
likelihood in RAxML 8.0.0 (GTRGAMMAI model). Bootstrap values are shown at the branches (only support values > 50 are indicated).
Newly determined sequences are highlighted in bold.
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Fig. 2. Lankesterella sporozoites in blood of different passerine hosts. The parasites were found in thrombocytes and leukocytes. (A-B)
Great Tit (Parus major), (C-D) Blue Tit (Cyanistes caeruleus), (E-F) Marsh Tit (Poecile palustris), (G-H) Sedge Warbler (Acrocephalus
schoenobaenus), (I) Reed Warbler (Acrocephalus scirpaceus), (J) Marsh Warbler (Acrocephalus palustris) (K) Eurasian Jay (Garrulus
glandarius), (L) Starling (Sturnus vulgaris). Bar: 10 mm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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genus level or are even species-specific in some cases
(Fig. 1). More sampling of different avian species belonging
to the same genus and sampling of genera belonging to the
same family would shed light on this topic. As concerns the
host specificity of amphibian and reptile Lankesterella, the
information is scarce, but it seems that they have a consid-
erable level of host specificity as well (Maia et al. 2016). In
this respect, the single lizard lineage clustering within the
avian/amphibian clade is surprising and might result from
an opportunistic interaction (Maia et al. 2014).

Host specificity of coccidians closely related to Lankes-
terella is usually narrow as well. Schellackia parasites are
known to be highly host specific, especially among lizards
(Megía-Palma et al. 2018; Zechmeisterová 2021). Members
of the family Eimeriidae are thought to have a considerable
degree of host specificity as well (Joyner, 1982; Knight
et al. 2018; Kubiski et al. 2022; Schrenzel et al. 2005);
but exceptions including spillover or host switching occur
(Kvičerová and Hypša 2013). Some phylogenetic analyses
suggest that the genus Lankesterella is closely related to
the genus Caryospora (Barta 2001, Megía-Palma et al.
2015), which tends to heteroxenous development repre-
sented by the existence of so-called primary and secondary
hosts, for which the host specificity is not so strict. Some
Caryospora sequences including those of C. bigenetica
cluster with the Lankesterella clade in our analysis. It could
be possible that this flexibility in life cycles/transmission
occurs in Lankesterella as well and that Lankesterella might
be able to use multiple modes of transmission or several
invertebrate vectors. In fact, a strictly host-specific parasite
probably cannot use a vector with opportunistic feeding
preferences, since its transmission to the next susceptible
individual would be unlikely. Therefore, transmission by
permanent ectoparasites (e. g., ticks, fleas, lice or mites)
or direct life cycles seem to be more probable for
Lankesterella.
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The avian isolates of the genus Isospora Schneider, 1881
form its own clade in the phylogenetic tree; nine newly
determined sequences from blood of several Warbler spe-
cies, a Chaffinch, and a Hawfinch are closely related to Iso-
spora lineages obtained from different species of passerines.
The grouping of the Caryospora-like isolate from Magpie-
lark (Grallina cyanoleuca) with Isospora suggests that the
genus may be paraphyletic (Liu et al. 2020). Isospora par-
asites can be found as faecal oocysts or as blood merozoites
in the avian host (Schrenzel et al. 2005). Extraintestinal
stages of Isospora were not detected in the blood of tits.
It is probable that, besides hosting Lankesterella, warblers
of the studied populations are infected with Isospora coc-
cidians with extraintestinal (blood) stages; this type of life
cycle has been demonstrated in canaries (Box 1967) and
was suspected previously in Polish warbler populations
(Biedrzycka et al. 2013). Interestingly, all the warblers that
we found positive for Isospora by PCR were negative by
microscopy, thus preventing morphological comparison
with Lankesterella blood stages (Fig. 2). Hence, unless a
PCR protocol specific for the genus Lankesterella is devel-
oped, samples positive by the available PCR protocols
should be sequenced to avoid confusion with extraintestinal
Isospora species.

Conclusion

This study shows that avian Lankesterella parasites are
host-specific at the genus or even the species level. The life
cycle of avian Lankesterella still remains unresolved, and
consistent data concerning prevalence and factors influenc-
ing Lankesterella distribution in host populations are lack-
ing. Being widespread blood parasites, avian
Lankesterella thus deserves further attention.
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