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[1] Diamond Lake in Minnesota is covered every winter with ice and snow providing a
modified thermal insulation between water and air. Autonomous temperature sensors, data
loggers, were placed in this lake so that hourly measurements could be obtained from the
snow-covered ice and water. The sensors that became frozen measured damped and delayed
thermal response from the air-temperature fluctuation. Those sensors that were deeper
within the snow-covered ice measured continuous, almost constant, temperature values near
freezing. Several of them were within the liquid water and responded with a fluctuation of
24 h periods of amplitudes up to 0.2�C. Our analysis of the vertical temperature profiles
suggested that the source of periodic water heating comes from the lake bottom. Because of
the absence of daily temperature variations of the snow-covered ice, the influence of the air-
temperature fluctuation can be ruled out. We attribute the heating process to the periodic
inflow of groundwater to the lake and the cooling to the heat diffusion to the overlying ice
cover. The periodic groundwater inflow is interpreted due to solid Earth tides, which cause
periodic fluctuations of the groundwater pressure head.

Citation: Kletetschka, G., T. Fischer, J. Mls, and P. D�ed�e�cek (2013), Temperature fluctuations underneath the ice in Diamond Lake,
Hennepin County, Minnesota, Water Resour. Res., 49, doi:10.1002/wrcr.20261.

1. Introduction

[2] The formation of the ice over lakes and its thickening
is a result of air temperature, wind condition, and snow
cover [Adams and Roulet, 1980; Adams and Prowse, 1981;
Bengtsson, 1986; Gow and Langston, 1977; Jones, 1969;
Kirillin et al., 2012]. Because the thermal conductivity of
the ice is 1–2 orders of magnitude larger than that of the
snow, any thickness of snow over ice provides a significant
thermal barrier between temperature of the air and the tem-
perature of the ice. Therefore, the formation of the ice over
the lake depends on how much snow covers the lake.
Another type of ice is a snow ice formation that is initiated
when the mass of snow on the ice causes the ice to sink
below the pond’s water level, and water flows up through
fractures to the ice surface. The thermal resistance of snow
becomes a factor when freezing the slush into the snow ice.
The phase change regime of ice and its response to air-tem-
perature variability, snow accumulation, and ice formation
have been shown to consistently decrease toward the bot-
tom of the ice/water interface [Gould and Jeffries, 2005].

Such fluctuation stays within a fraction of the degree, and
the ice creates a natural protection from the environmental
fluctuation [Kirillin et al., 2009, 2012; Malm et al., 1997a;
Zdorovennova, 2009].

[3] The thermal structures in the vicinity of the ice-water
and water-sediment interfaces have been given attention in
order to characterize the amount of heat released from sedi-
ments [Zdorovennova, 2009]. When there are no other heat
sources (heat exchange with the atmosphere, solar radiation
penetrating through the ice, river inflow), the heat flux from
the bottom relates to heat accumulation from the previous
summer. Because the littoral zone is shallower there is
more of the heat captured near the shore than there is in the
deeper parts of the lake. Such heat excess from bottom
sediments near the shore was reported from small shallow
Karelian Lakes [Malm et al., 1997a, 1997b]. However,
multiple water temperature measurements near bottom
sediments in the Lake Vendyurskoe revealed enigmatic
temperature structures with 1 day period that could not be
explained by baroclinic seiche under the ice [Zdoroven-
nova, 2009] with a possibility that such variation may
relate to the Poincare type waves [Kirillin et al., 2009]. Kir-
illin also measured details of the temperature variation of
ice-covered Lake M€uggelsee in Germany and saw the peri-
ods of 24, 11, and 8 h in their record. These fluctuations
were independent from the amount of snowfall or its melt-
ing and indicated that water temperature fluctuations are
separated from its solar heating [Kirillin et al., 2009].

[4] Observation of the 1 day temperature fluctuation
periods in shallow lakes suggests a presence of fundamen-
tal forces controlling the winter lake environment. Ice over
lakes forms natural protection from environmental
extremes important for survival of life forms and may be
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critical for development of life, both on Earth and on other
bodies of the solar system where the interface between the
liquid water and ice is critical for the origin of life. Similar
conditions exist not only at the bottoms of numerous lakes
whose surface water freezes but also at water/ice interfaces
on the top of completely enclosed glacial lakes like the
Lake Vostok in Antarctica, similar lakes that are believed
to be buried on Mars, as well as the interface of the ice and
water on Europa, the moon of Jupiter [Kletetschka et al.,
2006]. The projected broad relations warrants furthering
our understanding of the forces responsible for this not
completely understood phenomena. Even though the work
by Kirillin and Zdorrovenova was done in fairly shallow
lakes, it shows that the fluctuating temperature signal is
confined to the sediment/water boundary and disappears to-
ward the ice/water boundary. We chose even shallower
lake, the Diamond Lake, Minnesota, with average depth
of 2 m.

2. Temperature Monitoring

[5] Autonomous data loggers, iButtons, were utilized to
measure not only the speed of the ice growth in the Dia-
mond Lake near Dayton and Rogers, Minnesota (geograph-
ical coordinates: longitude �93.506�, latitude 45.201�),
but also the environmental conditions that are being kept at
the very bottom of the lake ice thickening. The Diamond
Lake is small (1.64 km2) and shallow (maximum
depth¼ 2.44 m, mean depth¼ 1.98 m). It is 1.4 km long in
NS and 1.6 km wide in EW directions, with its 7.24 km

shoreline, and stores about 3 km3 of water (see Figure F11).
The bottom of this lake consists of coarse silt sediment.
The water is being fed into this lake from the marshes in
SW near Rogers town. Water exits in SE via the Diamond
Creek flowing into Hyden Lake and further toward the Mis-
sissippi River via the Elm Creek. Experimental site was
designed near the north shore where the depth of the Dia-
mond Lake was 58 cm. The ice that formed over the lake
was periodically covered with snow; whose depth was
recorded at KMSP AQ2weather station, 40 km southeast from
the sensor location (http://mesowest.utah.edu/index.html).

[6] The iButton data loggers (model DS1922L-F50),
with a temperature resolution of 0.06�C were used as the
autonomous sensors. They contained computer chips
enclosed in 16 mm diameter � 6 mm height stainless cylin-
drical cases. Such package is resistant to environmental
hazards such as dirt, moisture, and shock. These devices
were made by Embedded Data Systems, LLC (http://
www.maxim-ic.com).

[7] Ten sensors were placed in the lake water just after it
frozen over on 25 November 2010, when the ice was only 2
cm thick. They were retrieved on 29 March 2011. Sensors
were programmed to include the period of interest from 3
December till 19 February. AQ3Devices were submerged at 2,
5, 8.5, 12, 17, 22, 24, 26, 28.5, and 30.5 cm below the water
level taped to a 1 m of plastic rope, suspended down from
the floating container (Figure 1), and anchored with the
metal hook at the 58 cm deep bottom. They were pro-
grammed to register temperature every 60 min with a reso-
lution of 0.06�C. After data retrieval we checked all
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Figure 1. Ten temperature data loggers were placed at the northern shore of the Diamond Lake in Day-
ton, Minnesota. In the bathymetric map black arrows show the lake water input and output. The gray
arrow shows location of the sensors. The upper inset is schematic diagram showing the placement of the
sensors. The depth of the lake at the location of the sensors is 58 cm. The shore was 110 cm away. The
ice has reached the thickness of 20 cm and stayed constant during most of the measurement period.
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sensors, and they all worked properly and were suitable for
other missions.

3. Data and Results

[8] Temperature records obtained during the period
between the two thaws at the beginning of December and
the end of February are displayed in FigureF2 2. This period
was characterized by a continuous snow cover and mostly
freezing air temperatures. The temperature data separate
our devices into two groups (Figure 2): the measurements
in ice (sensors at the depths of 2.0, 5.0, 8.5, 12.0, and 17.0
cm; lower group of four curves in the upper region) and
measurements in water (sensors at the depths of 22.0, 24.0,
26.0, 28.5, and 30.5 cm; upper group of curves). During
the above-mentioned period the temperature in ice at the
depth of 2 cm varied between �0.06�C and �1.54�C with
minimum after small thaw at the end of December, when
the snow cover decreased from 40 down to 20 cm. Temper-
ature at this depth (at the margin of ice) shows strong
attenuation of variation of surface air temperature (SAT).
This phenomenon is more visible during the month of
December due to lower thermal conductivity of powder
snow. Several tens of centimeters of powder snow was pro-
viding a good thermal insulation for most of the measure-
ment period. The ice temperature at the depth of 17 cm has
been monotonous and insensitive to the short- and/or long-
term SAT variations. The ice thickness remained between
17 and 22 cm (see constant positive temperature of the sen-
sor at 22 cm and zero-subzero temperatures of the sensor at
17 cm in Figure 2) with the phase boundary moving
slightly down during the second half of the observational
period (see small decrease of temperature at the depth of
17 cm in Figure 2).

[9] Similar to the temperature in ice, the water tempera-
ture (upper group of curves in Figure 2) increased with the

depth in general. There are visible short- (days) and long-
term (several days) temperature variations in all depths dur-
ing the course of measurement. Long-term variations are
stronger at the deepest level of 30.5 cm near the bottom
and are attenuated upward. Short-term variations are atte-
nuated upward too, but only during the first period of the
measurement until about 10 January. In the second period
the amplitude of variations near the ice increased, whereas
the amplitude at the depth of 30.5 cm stayed similar to the
first period.

[10] Temperature gradient throughout the observational
period was positive (see Figure F33), and the maximum tem-
perature at the depth of 30.5 cm was lower than 1�C. This
means that the heat is coming from the lake bottom, and
free convection can be ruled out due to the highest water
density near the bottom. Such situation suggests conductive
heat transfer in the observed temperature profile. We used a
1-D solution of the conductive heat equation in a semi-infi-
nite homogeneous medium [Carslaw and Jaeger, 1959]:

@T

@t
¼ k

@2T

@Z2
ð1Þ

with the periodic boundary condition

T z ¼ 0; tð Þ ¼ A cos !t; ð2Þ

where t is the time, z is the depth, T is the temperature, k is
the thermal diffusivity, ! is the angular velocity, and A rep-
resents the amplitude of the boundary temperature wave.
The temperature at depth z and time t can be calculated as

T z; tð Þ ¼ Ae��zcos ��zþ !tð Þ; ð3Þ

where� ¼
ffiffiffiffiffiffiffiffiffiffiffi
!=2k

p
. It follows that the boundary condition

is attenuated exponentially away from the heat source, and

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Figure 2. (top) Overall record of temperatures from the eight sensors below the surface, air tempera-
ture, barometric pressure, and snow cover (dashed) from Diamond Lake, Minnesota, over the period of
78 days in winter 2010/2011. In the upper section the ice (lower set of four curves) and water (upper set
of three curves), temperature was measured by 10 sensors distributed in depths from 2 to 30.5 cm.
Curves for data loggers at 5.5 and 28.5 cm are not shown for clarity. The air-temperature curve, snow
cover, and barometric pressure records were obtained from the station KMST, 40 km southeast apart.
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the rate of attenuation depends on the frequency (period).
Note that the phase shift increases linearly with the distance
from the heat source.

[11] FigureF4 4 compares the observed and modeled ther-
mal attenuation of amplitude and phase shift during the pe-
riod from 10 to 30 December (crosses) and period from 15
January to 10 February (triangles). The mean amplitudes
and phase shifts were computed over these two periods by
solving for the regression constants a1, a2, a3, and a4 that
are part of the trigonometric polynomial T(t)¼ a1þ
a2(!t)þ a3 sin(!t)þ a4 cos(!t). Solid lines in Figure 4 rep-
resent computed amplitude attenuation and phase shift of
the observed temperature signal based on equation (3). The
source of the periodic temperature change is placed to the
depth with the highest amplitude of periodic changes: 30.5
cm in December and 22.5 cm (below the ice) in January/
February. The striking fit of the observations and model in
December confirms that conductive heat transfer was domi-
nant in the observed temperature profile during that period.
However, in January/February the observed and modeled
curves of amplitude decay strongly diverge. We suspect
that the temperature field during the second observation pe-
riod is strongly affected by another variable affecting the
periodic temperature changes at the water-ice contact. Per-
haps, once the lake and tributaries froze over, the water
below the ice drained out and left the ice somewhat sus-
pended between the ice and water. This will be a subject of
further research.

[12] Similar discrepancy emerged while monitoring the
mean temperatures of the investigated depth profile (Figure
3; from 10 to 30 December (squares) and from 15 January
to 10 February (circles)). Temperature gradient in water
(right side of graph) and ice (left side of graph) was 3.3�C/m
and 1.3�C/m over the first period and 2.1�C/m and 2.4�C/m

over the second period, respectively. The corresponding heat
flux is lower in water than in ice with 2.0 and 2.9 W/m2 dur-
ing the first period, but 1.3 and 5.3 W/m2 during the second
one, respectively. Calculation assumed only a conductive
heat transfer. The values of the temperature gradient (heat
flux) in water are in good agreement with other lakes in Min-
nesota and Wisconsin [Fang and Stefan, 1996]. The discrep-
ancy between the heat flux in water and ice during January
and February can be connected with the phase changes in the
water-ice transition zone. The heat transfer during this period
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Figure 4. Observed and modeled attenuation of (top) am-
plitude and (bottom) phase shift of the daily temperature
oscillations during the period from 10 to 30 December
(crosses) and period from 15 January to 10 February (trian-
gles). Solid lines represent computed amplitude attenuation
and phase shift of observed temperature signal based on
equation (3).

Figure 3. Two sets of average temperature versus lake
depth profiles are shown along the thermometer array for
10–30 December 2010 (solid circles) and 15 January to 10
February 2011 (empty squares). Vertical dashed line sepa-
rates data obtained from lake ice and the data obtained
from lake water.
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cannot be explained by simple conduction theory and is
beyond the scope of this paper.

[13] We summarize the outcomes of Figures 2–4 as
follows:

[13] (1) The influence of daily air-temperature fluctua-
tions on the water temperature variations can be ruled out
for two reasons. First, the air-temperature variations show
prevailing long periods caused by ambient weather
changes, and the corresponding daily period is minor. Sec-
ond, the air-temperature variation is separated from the first
sensor in ice by a 20 to 40 cm thick layer of snow. At the
ice depth of 2 cm, the amplitudes of air-temperature varia-
tion completely disappear. Only the long-term air-tempera-
ture variations are visible in the uppermost sensors,
because the longer periods are less attenuated.

[13] (2) There is a positive temperature gradient during
the whole snow-covered period (Figure 3). It suggests that
the source of the heat and cold (heat sink) should be below
and above of the device array, respectively. The daily tem-
perature maxima occur at about midnight, and this disquali-
fies the possible origin of the water temperature variations
as a response to the Sun radiation.

[13] (3) Periodic temperature variations in the water at
the depth of 30.5 cm are visible during the whole observa-
tion period between the thaws. The variations are attenu-
ated upward during the month of December, and the
conductive heat transfer plays substantial role. During the
month of January and the first half of February the varia-
tions in the upper part of the sensor chain under the ice
cover became stronger due to other mechanisms of
unknown origin.

[14] During the snow-covered period, air-temperature
variations do not affect the dynamics of water temperature
field. During the thaw when the snow disappears, the solar
heating becomes more effective, and the radiation-driven
convection starts to develop. As a result, the temperature
gradient in the close vicinity of the ice-water interface is
nearly permanent for most of the winter, and the heat flux
from water to ice varies slightly in time [see Malm et al.,
1997a, 1997b]. This is in agreement with our measurements
and clearly visible in Figure 3 where the mean temperature
gradient between two detectors just under the ice cover is
similar during both of the above-mentioned periods (De-
cember and January/February). Warming from the bottom
is driven by the heat stored in the bottom sediments during
the summer [Fang and Stefan, 1996]. This process starts
immediately when the average temperature of the air drops
below the lake bottom temperature [Zdorovennova, 2009].

[15] We examine the periodicity of the temperature
records by spectral analysis (FigureF5 5a). The amplitude
spectrum of the temperatures shows few pronounced max-
ima at 24.0, 12.1, and 8.0 h. While the 24 h period is undis-
putable, we consider the relevance of the 8 and 12 h
periods questionable. The reason is the spiky character of
the temperature records caused by the insufficient ampli-
tude resolution of the digitized temperature, which gener-
ates higher harmonics.

4. Discussion

[16] Two possible physical mechanisms are considered
that could be responsible for periodical discharge of the

warmer water to the lower part of the measured profile. The
first are the basin-scale internal waves that may affect the
temperature distribution in shallow lakes. Among them,
two kinds of waves can be distinguished. The first are the
baroclinic seiches. The period of a baroclinic seiche is
given [Gill, 1982; Zdorovennova, 2009] as

T1 ¼
2�L

H
ffiffiffiffiffiffi
g
�

d�
dz

q ; ð4Þ

where the index 1 denotes mode of the baroclinic seiche, L
is the maximum length of the lake basin, H is the mean
depth of the lake minus the ice thickness, g is the gravity
acceleration, � is the average water density, and its deriva-
tive is average vertical density gradient.

[17] Another kind of basin-scale internal waves is con-
nected with inertial frequency and the Earth rotation, which
generate waves of the geostrophic inertia-gravity character
of two frequencies [Kirillin et al., 2009] split around the
inertia-gravity waves into supercritical (Poincare wave)
and subcritical (Kelvin wave) modes propagating in oppo-
site directions [Gill, 1982]. Kelvin wave affects the water-
sediment interface in the littoral zone, where it can produce
shear turbulence and resuspension, while the Poincare
wave produces water movements in the middle of the lake
[Kirillin et al., 2009]. Dissipation of these rotational waves
has longer time scales than simple seiches and for elliptical
basin can last up to 1 week [Antenucci and Imberger,
2001a, 2001b].

[18] The second mechanism is the tidal accelerations that
act on both the solid Earth and water bodies, generating
time-dependent changes of the water level. The combina-
tion of the Moon and Sun motions with the Earth rotation
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Figure 5. Amplitude spectra show (a) temperature and
(b) barometric records at depths of 22 and 30 cm for the pe-
riod 20 January to 10 February 2011 when the amplitude of
oscillations was the highest.
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results in a complex time dependence of tidal acceleration,
which can be expressed as a sum of harmonic tidal constit-
uents with prevailing diurnal and semidiurnal periods.
Unlike the oceans, the groundwater is not attracted directly
by the tidal forces. Instead, the solid Earth tides generate
deformation of the rock environment, which results in
cyclic opening and closing of the pore space [Fischer et al.,
2006; Rojstaczer and Riley, 1990]. It results in oscillations
of pressure head causing Darcian flow of groundwater that
periodically changes its direction.

[19] For the selection of the more likely mechanism we
first verify the possible effect of seiches by examining their
period, which depends on the lake geometry and density
gradients. Using approach of Zdorovennova [2009], the pe-
riod of a baroclinic seiche can be evaluated using equation
(4). In FigureF6 6 we show the dependence of seiche period
on the bottom temperature and mean lake depth for the
maximum length of the lake basin L¼ 1.5 km and average
water density �¼ 999.957 kg/m3. Average water density
gradient was estimated from the bottom and ice interface
temperatures, and the lake depth H was considered in the
range 0.5–2.5 m. It appears that if for the bottom tempera-
ture ranges from 0�C to 4�C the seiche period varies from
about 2 days and more. However, the bottom temperature
probably does not exceed 1� C based on the measured tem-
perature profile and the mean lake bottom temperatures
measured in Minnesota [Fang and Stefan, 1998].AQ4 There-
fore, the seiche period would exceed 3 days, which is in
contrast with the exact period of the temperature oscilla-
tions of 24 h found in the spectrum in Figure 5a. This dis-
qualifies the seiches as the possible driving force and
supports tides as the most likely driving mechanism of
observed temperature variations.

[20] Next we analyze the possible influence of tides. The
mechanism that could convert the tidal acceleration to the

oscillations of pressure head may be complex as it strongly
depends on the structure of the underlying layers, particu-
larly in the presence of fractures and/or faults. Such mecha-
nisms were presented in mathematical models [Bodvarss,
1970; Ondovcin et al., 2012]. In our approach we assume a
presence of semipervious aquitard beneath the lake bottom.
Lake sediment layer does not allow for any measurable
amount of flow through the whole surface of the bottom.
However, the communication between the underlying aqui-
fer and the lake water is possible through preferential
zones. As the water enters the lake bottom via these zones,
it spreads laterally over the lake’s floor due its higher den-
sity, while the heat in vertical direction moves
conductively.

[21] For tidal analysis of periodic inflow of groundwater
we compared the theoretical Earth tides with the tempera-
ture records. We have evaluated the tidal effects for the
region of interest in Minnesota at latitude 45.201�N and
longitude �93.504�E. AQ5The ocean load was not taken into
account because of its negligible effect at a distance larger
than 1000 km from the sea. The tidal potentials and the
vector tidal acceleration for the investigated time period
were calculated using a program [Skalsky, 1990] based on
Tamura’s [Tamura, 1987] development. Additionally, the
volumetric strains and the longitudinal strains in the N, E,
and Z directions were evaluated using a slightly modified
ETERNA AQ6program [Wenzel, 1993] based on the global
elastic tide model. The selected tidal characteristics are
shown along with the temperature records in Figure F77 and
indicate a possible relationship between the temperature
data and the modeled solid Earth tides. To quantify this
relation a cross correlation of the time series in the time lag
interval from �4 to þ4 days was determined (Figure F88). In
terms of the tidal force, the maximum cross correlation of
0.49 at the phase lag of 50 h and the maximum anticorrela-
tion of �0.44 at the lag of �10 h were found for the verti-
cal component of the tidal force. The solid Earth strains
show the maximum correlation of 0.45 for the phase lag of
about 9 h and maximum anticorrelation of �0.44 for the
phase lag of 21 h. Here the positive phase lag corresponds
to a delay of the temperature maxima after the maxima of
the Earth tides.

[22] The cross-correlation factor of about 0.4 is not insig-
nificant, namely, in view of the spiky temperature record,
which ranges within the first digits of the sensors’ tempera-
ture resolution of 0.06�C. Note that the cross correlation
with tides shows global maxima within the interval of 0–2
days (Figure 8). Especially, the tidal force shows sharp
global maximum. This suggests that both the daily period
and the low-frequency modulation period present in Earth
tides are transferred to the temperature oscillations. The
similar values of positive correlation and anticorrelation for
both the vertical component of the tidal force and for the
volumetric tidal strains do not allow for clear identification
of the driving mechanisms of the temperature variations.
The fact that the temperature maxima follow the maxima
of the Earth tides with a delay of several hours supports the
hypothesis that the groundwater is injected from the under-
lying aquifer due to the tidal effects.

[23] In addition to the Earth tides acting as a driving
force for periodic temperature variations, the effect of
atmospheric tides also should be examined. In contrast to
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Figure 6. Period of baroclinic seiches as a function of
bottom temperature and lake depth (equation (4)) calcu-
lated for L¼ 1.5 km and temperature-dependent water den-
sity. The bold line refers to the mean depth of the lakeAQ11 of
1.7 m.
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Earth tides, the atmospheric tides are driven by periodic so-
lar heating of the atmosphere with a strongly prevailing 12
h period [Chapman and Lindzen, 1970; Covey et al., 2011]
as the influence of the equator region dominates. Despite
the fact that the tidal variations at middle latitudes are
masked by air pressure variations due to weather changes
[Lindzen and Chapman, 1969], the 12 h period is present in
the spectrum of Figure 5 for the barometric pressure record
in Minnesota (compare the long-period variations dominat-
ing the barometric record in Figure 2 with its spectrum in
Figure 5). We infer that the influence of atmospheric tides

is negligible because their dominant period of 12 h van-
ishes in the temperature records where 24 h period
dominates.

[24] The water table fluctuation due to Earth tides is a
complex function of the hydraulic parameters of the aqui-
fers. Larger fluctuations are expected if the formation has a
higher permeability and a lower specific yield [Rojstaczer
and Riley, 1990]. This could be the case of the investigated
area, whose surficial geology includes silt containing till
with specific yield typically below 10% [Johnson, 1967]. It
should be noted that many observations show that the tidal
behavior of wells is strongly laterally dependent [Mrlina et
al., 2003]. Such dependence could be caused by a lateral
heterogeneity of the aquifer whose parts are connected with
a deeper fault system that is exposed to a cyclic stress per-
turbation due to the Earth tides.

5. Conclusions

[25] Analysis of the vertical profile of the lake water
temperatures for a period of 3 months during the winter
shows that water temperature under the ice oscillates by
0.2�C with a daily period, while the temperature of the ice
shows only the long-period changes reflecting the variation
of the air temperature. The temperature variation from shal-
low to deeper parts of the lake is governed by the periodic
thermal conduction during the first month. However, during
the second and the third month we identified the existence
of the periodic variable insulation condition responsible for
variable heat conduction at the ice-water interface and
sharp deviation from regular periodic heat conduction
observed during the first month.

[26] We have provided two models explaining the peri-
odic thermal oscillation near the lake ice-water interface.
The first model is considering the baroclinic seiches. Spe-
cific lake geometry indicates the period of the first mode of
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Figure 7. Detailed segment of all of the temperature data from 10 data loggers and Earth tides for the
period 18–26 December 2010. Solid line is the vertical component of tidal acceleration, and dashed line
is the volume strain. The numbers in the legend are the depths of the sensors underneath the water level
in centimeters.

Figure 8. Cross-correlation function between volumetric
strain and temperature. Positive phase corresponds to delay
of temperature at 30.5 cm depth after Earth tides (tidal
force, dashed line; volumetric strain, full line) for the
observational period shown in Figure 7.
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barometric seiches is larger than 3 days, which is far from
what we observed. The second model, the influence of Earth
tides, appears more consistent with the data because the tem-
perature period matches the 1 day period the Earth tides.

[27] We propose that the Earth tides may periodically
change the porosity of the underlying aquifer, squeezing
periodically the warmer water out toward the surface. This
process would be responsible for the water temperature var-
iations by the periodic inflow of the warmer groundwater.
Because the water stays below the 4�C at the lake bottom,
the heat is transferred by conduction, which we confirmed
by comparing the measured data with the theoretical
model. The tidal influence on lake temperature oscillation
is supported by both spectral analysis of tides and cross
correlation of measured temperature series with the mod-
eled tidal force and volumetric strains.

[28] Observations of the tide and/or baroclinic seiche-
induced temperature changes have yet not been reported
and open an important angle when estimating the thermal
budget under the lake ice. These changes speed up the
transfer of heat from the bottom to the ice cover and serve
as an important variable for existence of life in completely
covered water bodies with ice (Lake Vostok) or similar
once on other planets (Mars) and moons (Europa).
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