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Abstract

The paper studies some consequences of the mathematical formulation of the recently pro-
posed hypoplastic model for clays. Particular attention is paid to the question if the hy-
poplastic model predicts existence of the state boundary surface, defined as a boundary of
all admissible states in the stress-void ratio space. It is shown that the model enables us
to derive an explicit formulation of asymptotic (swept-out-memory) states in the stress-void
ratio space, which constitute so-called swept-out-memory surface. Further it is demonstrated
that the swept-out-memory surface is a close approximation of the state boundary surface
although, in general, they do not coincide. Finally, the influence of constitutive parameters
on the shape of the swept-out-memory surface is studied. For parameters reasonable for
fine-grained soils its shape is similar to the state boundary surface of the Modified Cam clay
model.

1 Introduction

Hypoplastic constitutive models have been developed since 1980’s and since then they have
established a solid base for an alternative description of the soil behaviour, without an explicit
definition of yield and potential surfaces – see for example the review [34]. Recent hypoplastic
models [12, 37] include the concept of critical states and have been successfully used in many
computations of boundary value problems within coarse-grained soils, e.g. [36, 28, 17, 24, 8].
The progress of hypoplastic models suitable for the description of fine-grained soils has been
delayed. Rate-dependent [26, 13] and rate-independent [15, 21] hypoplastic models for clays
promise to follow the success of the development for sand. Nevertheless, a thorough testing
of various constitutive aspects is required in order to ensure a correct performance in general
conditions of boundary value problems.

One of the key characteristics of the behaviour of fine-grained soils, incorporated in different
ways in most of the currently available elasto-plastic constitutive models for fine-grained
soils, is a surface in the stress-void ratio space which bounds all admissible states (state
boundary surface, SBS). As hypoplastic models do not incorporate the state boundary sur-
face explicitly, the primary aim of this paper is to investigate if these models (in particular
a hypoplastic model for clays [21]) predict the state boundary surface as a by-product of the
constitutive formulation.

In this paper hypoplastic models will be distinguished according to the terminology laid
out by Kolymbas [19]. Models without internal structure (i.e. with Cauchy stress tensor T

being the only state variable) will be referred to as amorphous, whereas models with internal
structure (incorporated by means of additional state variables) endomorphous. In this work
we restrict our attention to endomorphous models with a single additional state variable
(void ratio e). Solid mechanics sign convention (compression negative) will be adopted
throughout, all stresses are considered as effective in the sense of Terzaghi. The operator
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arrow is defined as ~X = X/‖X‖, trace by trX = X : 1, with 1 being the second-order unit
tensor. T̂ is the normalised stress defined by T̂ = T/ trT, ‖D‖ =

√
D : D is the Euclidian

norm of D, which stands for the Euler’s stretching tensor.

The paper starts by introducing proportional response envelopes and definition of asymptotic
(swept-out-memory) states. Thereafter, pointing to the analogy with the limit and bounding
surfaces of amorphous hypoplastic models, a mathematical formulation of the surface in the
stress-void ratio space which covers all asymptotic states (named swept-out-memory surface)
is developed. Further, using the concept of so-called normalised incremental stress response
envelopes, it is demonstrated that swept-out-memory surface is a close approximation of
the state boundary surface. Finally, the influence of model parameters on the shape of the
swept-out-memory surface is discussed.

2 Response envelopes and swept-out-memory states

Response envelopes in axisymmetric stress space [10] were proposed as a graphical repre-
sentation of resulting stress rates imposed by different unit strain rates

√

D2
a + 2D2

r = 1
at one particular initial state (Da and Dr being axial and radial strain rates, respectively).
This concept proved to be useful in studying properties of rate-type constitutive equations,
however due to the infinitesimal nature of stress and strain rates they can not be stud-
ied experimentally. Hypoplastic models yield elliptic (smooth) response envelopes, whereas
elasto-plastic models are characterised by non-smooth envelopes.

A modification of the stress-rate envelopes towards incremental stress response envelopes,
as defined in [35], may be applied for finite values of stress and strain increments. Linear

strain paths with a fixed direction of stretching ~D and with a fixed length R∆ǫ (Eq. (2))
yield the stress response ∆T in the stress space T (see Fig. 1 for axisymmetric conditions).
The stress increment ∆T may be calculated by the time integration of the rate form of the
constitutive equation:

∆T =

∫ t1

t0

T̊dt (1)

where T̊ stands for a co-rotated (Jaumann) stress rate. The shape and size of the incremental
stress response envelopes depends on the value of

R∆ǫ = ‖
∫ t1

t0

D dt‖ (2)

An inverse procedure with constant
~̊
T and fixed length stress increments R∆σ, constituting

in the strain space incremental strain response envelopes, was applied experimentally by
Royis and Doanh [30] for sand and Costanzo et al. [6] for clays. These results were followed
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Figure 1: On the definition of the incremental stress response envelope for the special case
of axisymmetric conditions

by numerical investigations using DEM with rigid spheres [3] and used for evaluation of
predictive capabilities of different constitutive models [23, 33].

In addition to incremental responses, constitutive models should predict so-called asymptotic
states, as pointed out by Kolymbas [18]. Stress paths of sound constitutive models should

tend to proportional stress paths (constant ~T) for sufficiently long proportional strain paths

(constant ~D). As corresponding ~T and ~D at asymptotic states are independent of the initial
state, these states are often denoted as swept-out-memory (SOM) states [14], and may be
seen as attractors of the soil behaviour [11] (see Fig. 2).
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2

Figure 2: SOM-behaviour: proportional stress paths for proportional strain paths

The concept of swept-out-memory states may be extended also to endomorphous constitutive
models. For pairs of proportional stress and strain paths one can find corresponding void
ratios ep dependent on the mean stress p = − trT/3 (Fig. 3). Combinations of ep and
p plotted in the e : p space are usually denoted as normal compression lines (NCL). A
particular example of SOM-states is the critical state with trD = 0 and T̊ = 0, where SOM
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stress ratio follows from the critical state friction angle ϕc and void ratio from the position
of the critical state line in the stress-void ratio space.

pe/eε

ε T2

1
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1

Figure 3: Extended SOM-behaviour including void ratio

3 Basic properties of the considered constitutive model

This paper focuses on the particular hypoplastic model for clays [21], whose complete math-
ematical formulation is given in Appendix A. The model may be written in its most general
form by

T̊ = h (T,D, e) (3)

The model belongs to the sub-class of hypoplastic models referred to as endomorphous
(Sec. 1). The particular form of the isotropic tensor-valued function h follows from [12] and
reads

T̊ (T,D, e) = fs (trT)
[

L(T̂) : D + fd (trT, e)N(T̂)‖D‖
]

(4)

where fs and fd are so-called barotropy and pyknotropy factors [12], which incorporate the
influence of the mean stress and void ratio. Note that differently from [12], the barotropy
factor fs of the hypoplastic model for clays is independent of void ratio e.

The following properties of the considered constitutive equation are important for the devel-
opments presented in this paper:

1. The function h is positively homogeneous of degree 1 in D:

h (T, γD, e) = γh (T,D, e) (5)

for any γ > 0. This property implies that the behaviour of the material is not influenced
by any change in the time scale, i.e. the behaviour is rate-independent.
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2. For a constant value of the pyknotropy factor fd, the function h is positively homoge-
neous of degree 1 in T, thus

h (γT,D, e) = γh (T,D, e) (6)

for any γ > 0. This property follows from the fact that in the considered model the
tensors L and N are functions of the normalised stress T̂ only, and the ratio fs/ trT
is constant (consequence of the assumption of a linear isotropic normal compression
line in the ln(1 + e):ln p space [2]).

For cases described by Eq. (6), the behaviour may be normalised by the current mean
stress p, or in a general case, by Hvorslev’s equivalent pressure on the isotropic normal
compression line p∗e. This procedure will be applied in Sec. 5.

3. The model predicts swept-out-memory states, introduced in Sec. 2. For a discussion
on the prediction of SOM behaviour by hypoplastic models the reader is referred to
[27].

Before proceeding to the derivation of the state boundary surface of the considered consti-
tutive model, we recall some basic properties of more simple amorphous hypoplastic models.

4 Limit surface and Bounding surface

Amorphous hypoplastic constitutive models (e.g. model from [38]) may still be written using
Eq. (4) [20], considering fd = const. Eq. (3) therefore reduces to

T̊ = h (T,D) (7)

For brevity, we will consider the factor fs in Eq. (4) embedded in the constitutive tensors L

and N. Therefore, we may write

T̊ (T,D) = L(T) : D + N(T)‖D‖ (8)

Based on the fundamental experimental evidence, all reasonable constitutive models for
soils must consider the domain of admissible states in the stress space, bounded by a surface,
formally defined through an isotropic tensor function. In the sequel, we will distinguish
between two different notions: limit surface and bounding surface:

1. Limit surface [5] f(T), sometimes referred to as invertibility surface [34], failure surface
[39] or yield surface [19], is defined in the stress space as a boundary of all states where
Eq. (7) is invertible.
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2. Bounding surface [27] b(T) (or bound surface [39]) is defined in the stress space as a
boundary of all admissible states.1

Limit surface has been embedded even in very early versions of hypoplastic models (see, e.g.,
[18]) as a by-product of a particular choice of tensorial constitutive functions. It has been
however soon recognised that the mathematical structure of Eq. (8) allows us to define the
limit surface explicitly (e.g., [4, 1, 37]).

Following [34], Eq. (8) may be written as

γS = L : D + N‖D‖ (9)

with γ being the norm of the stress increment γ = ‖T̊‖ and S its direction S =
~̊
T. Due to

the Property 1. of Sec. 3 we may, without loss of generality, assume ‖D‖ = 1. Eq. (9) then
reads

γS = L : ~D + N = L : (~D + B) (10)

with
B = L

−1 : N (11)

Expressing (11) obviously requires invertibility of the tensor L of the particular amorphous
hypoplastic model.

From Eq. (10) we get
~D = γL−1 : S− B (12)

Because ‖~D‖ = 1, we have
1 = ‖γL−1 : S− B‖ (13)

and therefore
γ2‖L−1 : S‖2 − 2γ(L−1 : S) : B + ‖B‖2 − 1 = 0 (14)

For states inside the limit surface we require that Eq. (14) has a single real positive solution
for the norm of the stress increment γ. It may be shown from the requirement

(L−1 : S) : B <

√

[(L−1 : S) : B]2 − ‖L−1 : S‖2(‖B‖2 − 1) (15)

that this condition is satisfied for
‖B‖2 − 1 < 0 (16)

Equation
‖B‖2 − 1 = 0 (17)

1Note that this definition is different compared to the one usually adopted for bounding surface plasticity
models [9] and kinematic hardening elasto-plastic models (e.g., [32]), where the term bounding surface is
used for the intersection of the state boundary surface and an elastic wall.
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therefore describes the limit of invertibility of Eq. (8) and, according to its definition, the limit
surface2. The fact that one solution corresponds to γ = 0 may be represented graphically
using the concept of response envelopes (Sec. 2). As may be seen from Fig. 4, the reference
stress point is then located on the response envelope. For states outside the limit surface
the solution of Eq. (14) is not unique and the reference stress point is located outside the
response envelope.
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Figure 4: Stress rate response envelopes for the initial stress located on the limit surface

An investigation of Fig. 4 reveals that the limit surface f(T) does not coincide with the
bounding surface b(T): for some directions of stretching the corresponding stress rates sur-
pass f(T). This fact, which was already described for example in [39], is a common feature
of hypoplastic models developed at the University of Karlsruhe (see [34]) and is related to
the derivation of constitutive tensors L and N. As noticed by [39] and as may be appre-
ciated also from Fig. 4, however, the difference between the bounding and limit surfaces is
not significant from the point of view of parameter identification.

The bounding surface can be mathematically characterised also by Eq. (14) requiring the
magnitude of the stress rate γ ≥ 0. Inserting the condition of the limit surface (‖B‖2−1 = 0)
into Eq. (14) yields

γ2‖L−1 : S‖2 − 2γ(L−1 : S) : B = 0 (18)

which leads to inequality constraining the possible directions of the stress rate S:

(L−1 : S) : B > 0 (19)

The bounding surface thus follows [34] from the condition

(L−1 : S) : B = 0 (20)

2Eqs. (10)–(17) are useful for the subsequent comparison of the limit and bounding surfaces. Limit surface

may be also found directly from T̊ = 0 following, e.g., [39]. In that case 0 = L : (D + B‖D‖), thus ~D = −B

and ‖B‖ − 1 = 0 at the limit surface, which corresponds to (17).
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As noted above, Eqs. (18)–(20), describing the bounding surface, hold for stress states at
the limit surface. They may be therefore used to specify conditions for b(T) to coincide with
f(T). As shown in [27], it is possible to enforce coincidence of b(T) and f(T) for hypoplastic
models by a suitable rotation of the hypoelastic tensor L. Note also that b(T) = f(T) is a
common feature of all CLoE hypoplastic models [5].

5 Swept-out-memory surface

Let us now consider the case of endomorphous hypoplastic models (particularly the model
from [21]) with the rate-formulation given in Eq. (4). For these models, the definitions of
the limit and bounding surfaces in the stress space are not unique, as both depend on the
additional scalar state variable, void ratio e. Based on the experimental evidence, which
led in 1960’s to the development of the critical state soil mechanics in Cambridge [29, 31],
the constitutive model should describe a single surface in the stress-void ratio space, which
bounds all admissible states. This surface is traditionally called state boundary surface (SBS).
It is, in general, a surface in the four-dimensional space of the three principal components
of the stress tensor T and void ratio e.

The property 2. from Sec. 3 allows us to simplify the following developments by introducing
a normalisation factor taking into account both changes of void ratio and of mean pressure.
A suitable quantity is Hvorslev’s equivalent pressure p∗e at the isotropic normal compression
line (see Fig. 5), following from the formulation of the isotropic NCL:

ln(1 + e) = N − λ∗ ln

(

p∗e
pr

)

(21)

with pr being the reference stress of 1 kPa. Using this normalisation the state boundary
surface may be, in general, fully characterised in the three-dimensional space defined by the
principal components of the normalised stress tensor Tn, where

Tn =
T

p∗e
(22)

The normalised stress rate Ṫn follows from (22)

Ṫn =
Ṫ

p∗e
− T

(p∗e)
2
ṗ∗e (23)

The stress rate Ṫ is, under the assumption of small strains, given by (4) and the rate of ṗ∗e
is found by the time-differentiation of the isotropic NCL given by Eq. (21):

ė

1 + e
= −λ

∗

p∗e
ṗ∗e (24)
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Figure 5: On the definition of Hvorslev’s equivalent pressure p∗e.

From the assumption of grain incompressibility we have

ė = (1 + e) trD (25)

and thus

ṗ∗e = −p
∗

e

λ∗
trD (26)

Substituting (4) and (26) into (23) we get

Ṫn =
1

p∗e
(LD + fdN‖D‖) +

T trD

p∗eλ
∗

(27)

For brevity, barotropy factor fs has been embedded in the constitutive tensors L and N.

We first try to find an expression equivalent to the limit surface in the stress-void ratio space.
As the limit surface in the stress space was defined by T̊ = 0 for one direction of stretching
~D (Eq. 17), we define its equivalent in the stress-void ratio space by Ṫn = 0. By applying
this definition on (27) we get

−T

λ∗
trD = L : D + fdN‖D‖ (28)

To solve Eq. (28) for a given T with unknowns ~D and fd, we introduce a fourth order tensor
A

A = L +
1

λ∗
T ⊗ 1 (29)

such that

A : ~D = L : ~D +
T

λ∗
tr ~D (30)
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Eq. (28) may be divided by ‖D‖ 6= 0 and rewritten

A : ~D + fdN = 0 (31)

Since ‖~D‖ = 1, we get
fd = ‖A−1 : N‖−1 (32)

(for invertibility condition of the tensor A see Appendix B) and

~D = − A
−1 : N

‖A−1 : N‖ (33)

As may be seen from the definitions of tensors A and N, the quantity A
−1 : N, and therefore

also ~D and fd for Ṫn = 0, are constant for a given ~T. As the condition Ṫn = 0 indeed
implies ~T = const., Eq. (28) describes asymptotic (swept-out-memory) states as defined in
Sec. 2, provided that the evolution equation for fd is consistent with (28). Therefore, we
name the equivalent of the limit surface for the stress-void ratio space a swept-out-memory
(SOM) surface. From (28) it is also obvious that condition trD = 0 directly implies T̊ = 0,
so the critical state is predicted as a particular SOM state.

The corresponding response in the p : e space may be found by taking the trace of Eq. (28)
and considering L : D + fdN‖D‖ = T̊. We get

ṗ = − p

λ∗
trD (34)

which is the rate formulation of the normal compression line with the slope λ∗ in the ln(1+e) :
ln p space. Positions of different NCLs in this space (and therefore the shape of the SOM
surface) are controlled by the pyknotropy factor fd, which in the considered model reads

fd =

(

2p

p∗e

)α

(35)

with α being a constant calculated from the model parameters (see Appendix A) and p∗e
comes from (21). Factor fd is constant along any line characterised by (34), which ensures
consistency between evolution equation for fd and (28) and thus implies that Eq. (28)
describes SOM states.

Combining Eqs. (32) and (35) allows us to calculate the value of p∗e at the SOM surface at
any stress level T and consequently to find the shape of the SOM surface in the normalised
Tn space:

p∗e = − 2

3
trT‖A−1 : N‖1/α (36)

The shape of the SOM surface in the normalised triaxial stress space, plotted for triaxial
stress invariants q = −(Ta − Tr) and p, is shown in Fig. 6 for material parameters given in
Tab. 1.
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Figure 6: Swept-out-memory surface in the normalised triaxial stress space for the hypoplas-
tic model [21] using London clay parameters (Tab. 1)

6 State boundary surface

In this section we discuss the difference between the swept-out-memory surface, defined in
Sec. 5, and the state boundary surface. Without loss of generality we again study response
of the considered model in the normalised space Tn. The state boundary surface is defined
as an envelope of all admissible states of a soil element. In other words, no outer response
in the normalised space Tn can be generated. Using the concept of response envelopes (Sec.
2), stress rate response envelope plotted in the normalised Tn space (normalised response
envelope, NRE) for the states at the state boundary surface must not cross-sect the surface
(i.e., must have a common tangent with the state boundary surface).

We first presume that the state boundary surface is equal to the swept-out-memory surface.
A tangent to the normalised response envelope may then be found using a similar procedure
to that applied in Sec. 4 for evaluation of bounding surface of amorphous hypoplastic
models. Let γn be the norm of the normalised stress rate Ṫn (γn = ‖Ṫn‖) and Sn its
direction (Sn = Ṫn/‖Ṫn‖). Using the definition of the tensor A (Eq. 29) and assuming,
without loss of generality, ‖D‖ = 1, Eq. (27) reads

p∗eγnSn = A : ~D + fdN (37)

or
p∗eγnSn = A : (~D + fdBn) (38)

with
Bn = A

−1 : N (39)

Thus (from (38))
~D = p∗eγnA

−1 : Sn − fdBn (40)
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taking the norm of (40) we get

(p∗e)
2γ2

n‖A−1 : Sn‖2 − 2p∗eγnfd

(

A
−1 : Sn

)

: Bn + f 2

d‖Bn‖2 − 1 = 0 (41)

For the states at the SOM surface we have fd = ‖Bn‖−1 (32). Introducing this condition
into (41) leads to

p∗eγ
2

n‖A−1 : Sn‖2 − 2γn

(

A
−1 : Sn

)

: ~DSOM = 0 (42)

where ~DSOM is the direction of the proportional stretching corresponding to the swept-out-
memory conditions for a given state Tn (from 33):

~DSOM = − Bn

‖Bn‖
(43)

As γn represents the norm of Ṫn, it must be positive or null. Therefore, possible directions
Sn must be confined in the half-space defined by

(

A
−1 : Sn

)

: ~DSOM > 0 (44)

where the plane
(

A
−1 : Sn

)

: ~DSOM = 0 (45)

represents a tangent to the normalised response envelope.
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Figure 7: NIREs for the initial K0NC conditions. (b) provides detail of (a). NIREs are
plotted for R∆ǫ = 0.001, 0.0025, 0.005, 0.01, 0.02 (a) and R∆ǫ = 0.001 (b). Points at NIREs
denote compression and extension for D00 = D11 = D22 and trD = 0)

Fig. 7a depicts the SOM surface, tangent to the normalised response envelope calculated
according to Eq. (45) and incremental stress response envelopes (as defined in Sec. 2)
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plotted in the normalised space Tn (normalised incremental response envelope, NIRE) for
different values of R∆ǫ. Apparently, the tangent to the normalised response envelope is
nearly coincident with the tangent to the SOM surface. A detailed inspection in Fig. 7b,
however, reveals that the tangent to the NRE is slightly inclined with respect to the tangent
to the SOM surface and therefore proves that the state boundary surface, in general, does not
coincide with the swept-out-memory surface. The difference between tangents to NRE and
SOM surface is even more pronounced for initial states dry of critical (defined by p/p∗e < 0.5
in the model considered) as shown in Fig. 83.
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SOM surface
NIREs
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Figure 8: NIREs for the initial conditions with p/p∗e < 0.5, plotted for R∆ǫ =
0.001, 0.005, 0.01, 0.02, 0.035.

Therefore, similarly to the limit and bounding surfaces of amorphous hypoplastic models in
the stress space, the state boundary surface is located slightly outside the swept-out-memory
surface. Nevertheless, taking into account uncertainties in the experimental determination
of the state boundary surface, we may consider the swept-out-memory surface as a sufficient
approximation of the state boundary surface. For this reason we restrict our investigations
in the next sections to the SOM surface.

Figures 7 and 8 also demonstrate the asymptotic property of the considered hypoplastic
model, as for large R∆ǫ the normalised incremental response envelopes converge towards the
SOM surface. The model keeps this property also for the initial states outside the SOM
surface (see Fig. 9). Therefore, we see that the fact that the model allows to surpass slightly
the SOM surface (SBS is located slightly outside the SOM surface) does not spoil its abilities
to predict asymptotic states.

3In Fig. 8 normalised incremental response envelopes are cross-sected by the tangent to normalised re-
sponse envelopes calculated according to (45). This fact is to be expected, as, in general, a tangent to the
NRE represents a tangent to the NIRE only for R∆ǫ → 0.
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Figure 9: NIREs for the initial state outside the SOM surface. The initial state has
been imposed and does not follow from a model prediction. NIREs are plotted for
R∆ǫ = 0.001, 0.0025, 0.005, 0.01, 0.02.

7 Model performance

7.1 The influence of model parameters on the shape of the SOM

surface

The SOM surface shown in Fig. 6 was found using parameters derived in [21] for London clay
(with the exception of κ∗ = 0.014 instead of κ∗ = 0.016). They are summarised in Tab. 1.

Table 1: Parameters for London clay used in the simulations

ϕc [◦] λ∗ κ∗ N r
22.6 0.11 0.014 1.375 0.4

As follows from the equations representing the SOM surface (Sec. 5), its shape is dependent
on model parameters. A detailed study of Eq. (36) reveals that the parameters N and λ∗ do
not independently influence the shape of the SOM surface (see comments further) and the
influence of the parameter r is negligible (for its reasonable values). The shape of the SOM
surface is controlled by the critical state friction angle ϕc and by the ratio (λ∗−κ∗)/(λ∗+κ∗)
appearing in the expression for the pyknotropy factor fd, Eq. (58).

The influence of the parameter ϕc is shown in Fig. 10a. The value of ϕc was varied in the
analyses, while other parameters (Tab. 1) were kept constant. In order to normalise the
response for the variation in ϕc, the SOM surface is plotted in the space q/(Mp∗e):p/p

∗

e (as
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suggested in [7]), where the quantity M is defined as:










M =
6 sinϕc

3 − sinϕc

for triaxial compression

M =
6 sinϕc

3 + sinϕc

for triaxial extension
(46)

The influence of the ratio (λ∗ − κ∗)/(λ∗ + κ∗) is demonstrated in Fig. 10b. The value of
the parameter λ∗ = 0.11 was kept constant, whereas the parameter κ∗ was varied. The
corresponding values of the ratio (λ∗ − κ∗)/(λ∗ + κ∗) are also given in the figure.

Fig. 10 reveals that although the influence of the parameter ϕc and of the ratio (λ∗ −
κ∗)/(λ∗ + κ∗) on the shape of the SOM surface is significant, for reasonable values of the
involved parameters the shape remains close to the one predicted by the Modified Cam clay
model. Only for low values of the ratio (λ∗ − κ∗)/(λ∗ + κ∗) (large ratio κ∗/λ∗, i.e. soft
response in isotropic unloading), the SOM surface becomes non-convex in the vicinity of
isotropic stress states4.
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Figure 10: The influence of (a) the parameter ϕc and (b) of the ratio (λ∗ − κ∗)/(λ∗ + κ∗) on
the shape of the SOM surface

7.2 K0 normally compressed conditions

Finally, the equations for swept-out-memory conditions are applied in a study of the influence
of model parameters on K0 conditions in the normally compressed state (K0NC), see Fig. 11.

4The issue of convexity of a limit surface in the normalised plane is of relevance in the theory of plasticity,
where the convexity of the yield surface is crucial in order to properly define loading/unloading conditions.
In hypoplasticity, whether a non-convex SOM surface is acceptable or not can be judged only with reference
to available experimental data.
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The parameter ϕc and the ratio (λ∗ − κ∗)/(λ∗ + κ∗) were varied as in Sec. 7.1. Predictions
of K0NC by the hypoplastic model are compared with Jáky’s [16] equation

K0NC = 1 − sinϕc (47)

As demonstrated for example in [25], Eq. (47) is suitable for fine-grained soils. Predictions
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Figure 11: K0NC conditions predicted by the considered model, compared to Jáky’s [16]
formula and predictions by the Modified Cam clay model [29].

by the Modified Cam clay model [29] are also included in Fig. 11. In the calculation with
the Modified Cam clay model, the influence of elastic strain increments, which are at the
yield surface negligible compared to the plastic strain increments, is omitted. Consequently,

K0NC =
3 − η

3 + 2η
(48)

for the Modified Cam clay model, with

η =

√
9 + 4M2 − 3

2
and M =

6 sinϕc

3 − sinϕc
(49)

It can be seen in Fig. 11 that the considered hypoplastic model predicts correctly the trend
of decreasing K0NC with increasing ϕc. Although the hypoplastic model overpredicts K0NC

as compared to Eq. (47), its predictions are still significantly closer to Eq. (47) than the
predictions by the Modified Cam clay model.

Further discussion on the direction of stretching ~D at SOM conditions with respect to the
corresponding ~T, as well as on the SOM conditions predicted by different endomorphous
hypoplastic models, may be found in [22].
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8 Concluding remarks

The present paper studied if the hypoplastic model for clays [21] predicts, as a by–product
of the constitutive formulation, the existence of the state boundary surface, which may be
seen as a key characteristics of the behaviour of fine–grained soils.

It has been shown that for the given model it is possible to derive an explicit formulation for
the so-called swept-out-memory surface, which may be defined as an envelope of asymptotic
(swept-out-memory) states in the stress-void ratio space. The concept of the normalised
incremental stress response envelopes and the derivation of the tangent to the normalised
rate response envelopes was subsequently used to demonstrate that the swept-out-memory
surface is a close approximation of the state boundary surface, although, in general, they do
not coincide. It has been shown that there is a direct parallel between the swept-out-memory
and the state boundary surfaces defined in the stress-void ratio space for endomorphous hy-
poplastic models, and limit and bounding surfaces defined in the stress space for amorphous
hypoplastic models.

Finally the influence of the constitutive parameters on the shape of the swept-out-memory
surface has been studied by means of a parametric study. For parameters suitable for fine-
grained soils, the considered hypoplastic model predicts a swept-out-memory surface of a
similar shape to the state boundary surface of the Modified Cam clay model. However, the
K0 values at normally compressed states are better predicted by the hypoplastic model than
by the Modified Cam clay model.

A study of the shape of the SOM surface (Sec. 7) and invertibility condition of A (Appendix
B) reveal limitation of the hypoplastic model for clays, which does not perform correctly for
soils very soft in isotropic unloading. As a very rough guide, condition κ∗ < λ∗/4 should be
satisfied when using model [21]. More precise investigation requires to plot the SOM surface
and to ensure that the condition (66) is not satisfied.
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Appendix A

The mathematical structure of the hypoplastic model for clays is discussed in detail in [21].
The constitutive equation in rate form reads:

T̊ = fsL : D + fsfdN‖D‖ (50)

where:

L = 3
(

c1I + c2a
2T̂ ⊗ T̂

)

N = L :

(

−Y m

‖m‖

)

T̂ :=
T

trT
(51)

1 is the second–order identity tensor and I is the fourth–order identity tensor, with compo-
nents:

(I)ijkl :=
1

2
(1ik1jl + 1il1jk) (52)

In eq. (50), the functions fs(trT) (barotropy factor) and fd(trT, e) (pyknotropy factor) are
given by:

fs = − trT

λ∗

(

3 + a2 − 2αa
√

3
)

−1

fd =

[

− 2trT

3pr

exp

(

ln (1 + e) −N

λ∗

)]α

(53)

where pr is the reference stress 1 kPa. The scalar function Y and the second–order tensor
m appearing in Eq. (51) are given, respectively, by:

Y =

( √
3a

3 + a2
− 1

)

(I1I2 + 9I3)
(

1 − sin2 ϕc

)

8I3 sin2 ϕc

+

√
3a

3 + a2
(54)

in which:

I1 := trT I2 :=
1

2

[

T : T − (I1)
2
]

I3 := detT

and

m = − a

F

[

T̂ + T̂
∗ − T̂

3

(

6 T̂ : T̂ − 1

(F/a)2 + T̂ : T̂

)]

(55)

in which:

T̂
∗

= T̂ − 1

3
F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ (56)

tanψ =
√

3‖T̂∗‖ cos 3θ = −
√

6
tr
(

T̂
∗ · T̂∗ · T̂∗

)

(

T̂
∗

: T̂
∗

)3/2
(57)
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Finally, the scalars a, α, c1 and c2 appearing in eqs. (51)–(55), are given as functions of the
material parameters ϕc, λ

∗, κ∗ and r by the following relations:

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc

α =
1

ln 2
ln

[

λ∗ − κ∗

λ∗ + κ∗

(

3 + a2

a
√

3

)]

(58)

c1 =
2
(

3 + a2 − 2αa
√

3
)

9r
c2 = 1 + (1 − c1)

3

a2
(59)

The model requires five constitutive parameters, namely ϕc, λ
∗, κ∗, N and r, state is char-

acterised by the Cauchy stress T and void ratio e.

Appendix B

In this Appendix invertibility of the tensor A is discussed. Eq. (29) can be written with
help of Eqs. (51) and (53) as

A = −trT

λ∗

[

f ∗

s 3c1I − T̂ ⊗ 1 + f ∗

s 3c2a
2T̂ ⊗ T̂

]

= −trT

λ∗

[

f ∗

s 3c1I − T̂ ⊗ 1 + f ∗

s

[

3a2 + 9(1 − c1)
]

T̂ ⊗ T̂
]

(60)

with

f ∗

s =
(

3 + a2 − 2αa
√

3
)

−1

> 0 (61)

for any realistic values of a and α. Eq. (60) can be also written as

A = −trT

λ∗

[

C1I − T̂ ⊗ 1 + C2T̂ ⊗ T̂
]

(62)

with C1, C2 being scalar constants calculated from model parameters.

C1 =
2

3r
and C2 =

2a2 + 6(1 − c1)

3rc1
(63)

To study the invertibility condition of A, it is sufficient to consider tensor A
∗ = −λ∗A/trT

(only trT < 0 is allowed). In the principal stress components the determinant of A
∗ reads

detA∗ = C3

1 − C2

1

[

(T̂1 + T̂2 + T̂3) − C2(T̂
2

1 + T̂ 2

2 + T̂ 2

3 )
]

(64)

Inversion of the tensor A is possible if det A
∗ 6= 0. Because C1 6= 0 and T̂1 + T̂2 + T̂3 = 1,

this condition reads
C1 − 1 + C2(T̂

2

1 + T̂ 2

2 + T̂ 2

3 ) 6= 0 (65)
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Taking into account definitions of scalars C1 and C2 (63) and the fact that for compressive
stresses 1/3 < (T̂ 2

1
+ T̂ 2

2
+ T̂ 2

3
) < 1, we find that the invertibility of A is not guaranteed if

1

3

[

2a2 + 6(1 − c1)

c1

]

< (3r − 2) <
2a2 + 6(1 − c1)

c1
(66)

A detailed study of the condition (66) reveals that for reasonable values of material pa-
rameters the tensor A is invertible. For example for London clay parameters (Tab. 1) the
condition (66) reads 3.31 < −0.8 < 9.94. The invertibility of A may not be guaranteed for
unrealistically low values of the ratio (λ∗ − κ∗)/(λ∗ + κ∗).
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[28] K. Nübel and R. Cudmani. Examples of finite element calculations with the hypoplastic
law. In D. Kolymbas, editor, Constitutive Modelling of Granular Materials, pages 523–
538. Springer, 2000.

[29] K. H. Roscoe and J. B. Burland. On the generalised stress-strain behaviour of wet
clay. In J. Heyman and F. A. Leckie, editors, Engineering Plasticity, pages 535–609.
Cambridge: Cambridge Univesrity Press, 1968.

[30] P. Royis and T. Doanh. Theoretical analysis of strain response envelopes using incre-
mentally non-linear constitutive equations. International Journal for Numerical and
Analytical Methods in Geomechanics, 22(2):97–132, 1998.

[31] A. N. Schofield and C. P. Wroth. Critical state soil mechanics. McGraw-Hill Book Co.,
London, 1968.

[32] S. E. Stallebrass and R. N. Taylor. Prediction of ground movements in overconsolidated
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