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Abstract A new rate-independent hypoplastic model

for clays is developed. The model is based on the re-

cently proposed approach enabling explicit incorpora-

tion of the pre-defined asymptotic state boundary sur-
face and corresponding asymptotic strain rate direction

into hypoplasticity. Several shortcomings of the existing

hypoplastic model for clays are identified and corrected
using the proposed approach. Thanks to the indepen-

dent formulation of the individual model components,

the new model is more suitable to form a basis for fur-
ther developments and enhancements than the original

one.

Keywords hypoplasticity · asymptotic behaviour ·
clay · state boundary surface

1 Introduction

Hypoplasticity, a constitutive theory especially suitable

for modelling the behaviour of frictional materials, has
originally been developed to predict the behaviour of

granular materials such as sand or gravel [21,53,8,51,5].

Since the last decade, its modifications for fine grained

soils have been developed by several researchers. In par-
ticular, Niemunis [39] developed a rate-dependent vis-

cohypoplastic model for clays as a combination of hy-

poplasticity with Modified Cam-clay [46] yield condi-
tion. Niemunis et al. [40] further enhanced this model

by the effects of stregth anisotropy and irreversibility of
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the response within the state boundary surface. Gude-

hus [9] enhanced his earlier model from [8] by viscous ef-

fects. The other hypoplastic models do not consider vis-

cosity. Herle and Kolymbas [16] modified the model by
von Wolffersdorff [51] to predict the rate-independent

behaviour of soils with low friction angles. This model

was later improved by Maš́ın [24] by reducing number
of parameters and considering asymptotic states which

better represent the fine-grained soil behaviour. Fur-

ther, Weifner and Kolymbas [49] developed a hypoplas-
tic model aimed to simulate the behaviour of both sand

and clay. Youwai et al. [54] modified this model to sim-

ulate the behaviour of Bangkok soft clay. Huang et al.

[18] developed a model suitable for predicting the be-
haviour of normally consolidated clays.

In this work, we focus on further development of the

model by Maš́ın [24]. This model has been developed in

2005 and since then it has been thoroughly evaluated,
it was applied in simulation of boundary value prob-

lems and served as a basic model for further enhance-

ments. The evaluation of the model can be found in

Maš́ın et al. [36] and Hájek et al. [13], who compared
its predictive capabilities with other elasto-plastic and

hypoplastic models. Weifner and Kolymbas [50] com-

pared its predictions with the earlier hypoplastic model
for soils with low friction angles by Herle and Kolymbas

[16]. Gudehus and Maš́ın [12] demonstrated the model

performance using suitably chosen graphical represen-
tation. Maš́ın and Herle [32] investigated certain conse-

quences of the model mathematical formulation (exis-

tence and shape of the asymptotic state boundary sur-

face), and Maš́ın and Herle [33] proposed a modification
of the model that corrects the shape of the undrained

stress path of normally consolidated soils, inspired by

the work from Huang et al. [18].
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The model implementation for different finite ele-

ment codes is freely available on the internet (Gudehus
et al. [11]) and the model has been used in simulations

of boundary value problems. Maš́ın [26], Svoboda et al.

[48] and Svoboda and Maš́ın [47] applied it in simula-
tion of tunnelling problems in stiff clays, Maš́ın et al.

[31] simulated deep excavation in soft clay deposit, Ali

et al. [1] used the model to simulate undrained cavity
expansion. Herle et al. [17] adopted the model in a com-

plex probabilistic evaluation of properties of soils from

coal mining deposits. Miča et al. [37] used the model in

simulations of deep excavations in stiff clays.
The model has also been used as a driver for in-

cluding different special effects. Maš́ın [25] included the

effects of meta-stable structure (further evaluation of
that model may be found in Reference [27]). Maš́ın

and Khalili [34] developed a model for unsaturated soil.

This model, combined with the water retention model
by Maš́ın [28], has been compared with different con-

stitutive models for unsaturated soils in a benchmark

test described by D’Onza et al. [6]. The evaluation have

demonstrated good performance of unsaturated hypoplas-
tic model, coming along with relatively low number of

material parameters. Furthermore, Najser et al. [38] in-

cluded the effects of lumpy structure, and Maš́ın and
Khalili [35] included both the effects of partial satura-

tion and temperature on soil behaviour.

Hypoplasticity in its basic form, including the model
developed in this paper, cannot predict the soil be-

haviour in the small to very small strain range, and con-

sequently it is also unsuitable for predicting the cyclic

soil response. To overcome this shortcoming, the model
must be extended. One of the approaches is the con-

cept of intergranular strains (Niemunis and Herle [41]);

recently, another ways of the model enhancement have
been proposed, such as the incorporation of the load-

ing surface concept [7]. Even an enhanced model, how-

ever, is not ideal for predicting the cyclic response at
very high number of cycles. In such cases, different

approaches may be used, such as those proposed by

Niemunis et al. [43,42,44].

2 Limitations of the original clay hypoplastic

model

Since its development, the hypoplastic model from Ref.
[24] has been thoroughly evaluated and several short-

comings have been identified.

In particular, Maš́ın and Herle [32] studied the shape

of the asymptotic state boundary surface (ASBS) pre-
dicted by this model. The asymptotic state boundary

surface represents all asymptotic states in the stress

vs. void ratio space. The asymptotic states are those

achieved asymptotically after sufficiently long stretch-

ing with constant strain rate direction. For more infor-
mation on asymptotic soil behaviour, see [29].

Maš́ın and Herle [32] observed that the shape of

ASBS can be extracted from the hypoplastic model for-

mulation, and that it depends on the combination of
material parameters. For high ratios κ∗/λ∗, the model

predicts unrealistic shape of the ASBS, as shown in Fig.

1. This dependency of ASBS on material parameters is

not underlined by any physical phenomena, and is sim-
ply an undesired consequence of the particular model

formulation.
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Fig. 1 The shape of the ASBS predicted by the original
hypoplastic model, with different values of the parameter κ∗

(the remaining parameters given in Tab. 1, label ”eval.”).

The second limitation of the model is related to dif-

ficulties in its further enhancements. Maš́ın and Herle

[32] have shown that the shape of the ASBS of the

model depends on the constitutive tensor L. The model
can be enhanced by the so-called intergranular strain

concept (Niemunis and Herle [41]), which allows to pre-

dict high very small strain stiffness and the stiffness
dependency on recent history of deformation. The very

small strain stiffness is governed by the tensor L. The

tensor L of the original model has several undesired
properties – for example, it does not allow to specify

inherent stiffness anisotropy, often observed on samples

of undisturbed clay. Any modification of the tensor L

of the original model, however, improperly changes also
the shape of the ASBS, and the possibility of further

development of the model is thus limited.

In some cases, the original model was found to pre-

dict improperly the development of stiffness with shear

strain. As an example, Figure 2 shows shear strain –
deviatoric stress curve of an undrained shear test on

Dortmund clay from [17] (more details in Sec. 8.2). The

model predicts a sharp bend of the stress – strain curve
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at the shear strain level of approximately 5%, whereas

the experiment shows more gradual stiffness decrease.
This inaccuracy cannot be eliminated by modification

of the material parameters.
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Fig. 2 Shear strain vs. deviator stress curve of a triaxial
undrained shear test on Dortmund clay, together with simu-
lation by the original clay hypoplastic model.

3 Explicit incorporation of asymptotic states

into hypoplasticity

A procedure for explicit incorporation of the asymptotic
states into hypoplasticity has been proposed by Maš́ın

[30], and we will adopt this approach herein. A general

formulation of the hypoplastic model may be written

as [8]

T̊ = fs (L : D+ fdN‖D‖) (1)

where T̊ andD represent the objective (Zaremba-Jaumann)
stress rate and the Euler stretching tensor respectively,

L and N are fourth- and second-order constitutive ten-

sors, fs is the factor controlling the influence of mean

stress (barotropy factor) and fd is the factor controlling
the influence of relative density (pyknotropy factor).

To evaluate the model response at the ASBS, we

will interpret it in the stress space normalised by the
size of the constant void ratio cross-section through the

ASBS. It is given by the Hvorslev equivalent pressure

pe, defined as a mean stress at the isotropic normal com-
pression line at the current void ratio e. The normalised

stress thus reads Tn = T/pe and it follows that

Ṫn =
∂

∂t

(

T

pe

)

=
Ṫ

pe
− T

p2e
ṗe (2)

The objective (Zaremba-Jaumann, see, e.g., [22]) rate

of the normalised stress T̊n, which vanishes for pure

rigid body rotation, is given by

T̊n = Ṫn +Tn ·W−W ·Tn (3)

where the spin tensor W is the skew-symmetric part of
the velocity gradient. Combination of (2) and (3) yields

T̊n =
1

pe

(

Ṫ+T ·W−W ·T− T

pe
ṗe

)

=
T̊

pe
− T

p2e
ṗe

(4)

In the following, we assume normal compression lines

linear in the ln(1 + e) vs. ln p/pr plane [3] (pr is the
reference stress of 1 kPa). The isotropic normal com-

pression line can be written as

ln(1 + e) = N − λ∗ ln(pe/pr) (5)

where N and λ∗ are model parameters. It follows that

pe = pr exp

[

N − ln(1 + e)

λ∗

]

(6)

and thus

ṗe = − pe
λ∗

(

ė

1 + e

)

= − pe
λ∗

trD (7)

Combination of (7), (4) and (1) implies that

T̊n =
fs
pe

(L : D+ fdN‖D‖) + T

peλ∗
trD (8)

During asymptotic stretching the stress state remains

fixed in the Tn space [32], provided the constant void

ratio cross-sections through the ASBS differ only in size
and not in shape. This condition implies T̊n = 0. It

then follows from (8) that

− T

λ∗
trDA = fs

(

L : DA + fAd N‖DA‖
)

(9)

where fAd is the value of fd at the ASBS and DA is the
asymptotic strain rate corresponding to the given stress

state. Eq. (9) can be manipulated in the following way:

−
(

T

λ∗
trDA + fsL : DA

)

= fsf
A
d N‖DA‖ (10)

−A : DA = fsf
A
d N‖DA‖ (11)

−A : d = fsf
A
d N (12)

where

A = fsL+
T

λ∗
⊗ 1 (13)

d =
DA

‖DA‖
(14)
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Eq. (12) implies that

N = −A : d

fsfAd
(15)

Combining (15) with (1) yields an alternative expres-

sion of the hypoplastic model

T̊ = fsL : D− fd
fAd

A : d‖D‖ (16)

An arbitrary shape of the ASBS can be incorporated
into hypoplasticity with the aid of Eq. (16), by appro-

priate specification of the dependence of fAd on the void

ratio and stress ratio. The corresponding asymptotic di-

rection of the strain rate is then prescribed by d. This
can be done independently of the selected expression

for the tensor L. Formulation of the ASBS shape and

asymptotic strain rate direction d proposed for the new
model is detailed in the following two sections.

4 Proposed shape of the asymptotic state

boundary surface

The shape of the asymptotic state boundary surface

should have certain properties to ensure good repre-
sentation of the experimental data and a physical con-

sistency. The following requirements have been consid-

ered:

1. Deviatoric (constant mean stress) cross-sections

through the ASBS should correspond to the failure
criterion by Matsuoka and Nakai [23].

2. Mobilised friction angle ϕm should be equal to the

critical state friction angle ϕc at pe/p = 2. This

specifies the position of the critical state line in the
ln p vs. ln(1 + e) plane.

3. ϕm for pe/p = 1 should be equal to zero to predict

the isotropic asymptotic state.
4. ϕm for pe/p → ∞ should limit to ϕm → 90◦. This

ensures that the ASBS does not span into the tensile

stress region.

The following expression is proposed which satisfies

these properties:

f = 0 = Fm +

(

p

pe

)ω

− 1 (17)

where Fm is the Matsuoka-Nakai factor, which may be
seen as an equivalent to the mobilised friction angle ϕm

(with Fm = sin2 ϕm) corresponding to the Matuoka-

Nakai failure criterion1. It is calculated as [23]

Fm =
9I3 + I1I2
I3 + I1I2

(18)

1 Note that the requirement No. 4 is satisfied only approx-
imately with the condition by Matsuoka and Nakai [23], as
Fm = 1 does not exactly represent the boundary of compres-
sive stresses.

with stress invariants I1, I2 and I3:

I1 = trT (19)

I2 =
1

2

[

T : T− (I1)
2
]

(20)

I3 = detT (21)

Eq. (17) can also be expressed as

(

p

pe

)ω

= 1− sin2 ϕm (22)

which is an equation of parabola of the form y = 1 −
x2, where x = sinϕm and y =

(

p
pe

)ω

. For p/pe = 1

the model predicts ϕm = 0 (isotropic stress state). For

pe/p → ∞ the mobilised friction angle limits to ϕm →
90◦. The exponent ω is expressed to ensure that for
pe/p = 2 mobilised friction angle equals to ϕc. To derive

a suitable expression for ω, pe/p = 2 and ϕm = ϕc is

substituted into Eq. (22):

(

1

2

)ω

= 1− sin2 ϕc (23)

which yields

ω = − ln
(

cos2 ϕc

)

ln 2
(24)

Additional freedom in the calibration of the shape of

ASBS is gained by the following modification of (24):

ω = − ln
(

cos2 ϕc

)

ln 2
+ a

(

Fm − sin2 ϕc

)

(25)

The additional term does not influence predictions at

the isotropic, critical and pe/p → ∞ states, but con-
trols the shape of ASBS at the other states through

the shape factor a, as shown in Fig. 3. If needed, a can

be considered as a material parameter controlling peak
friction angle of overconsolidated soil (Fig. 3). In the

present simulations, however, a fixed value of a = 0.3

has been used. This yields the state boundary surface

close to the elliptic shape of the ASBS of the Modified
Cam clay model [46] in the range p > pe/2.

The shape of the ASBS, calculated using Eqs. (17-

25), is in Fig. 4a plotted for the axisymmetric stress
state in the normalised stress plane p/pe vs. q/pe for

different critical state friction angles. The ASBS has the

desired properties summarised above. Fig. 4b shows the
shape of the ASBS of the original hypoplastic model,

calculated using procedure from [32]. The ASBS of the

original model has also the required properties; its shape,

however, depends on the other material parameters. For
comparison, Fig. 4c shows the ASBS of the Modified

Cam-clay model. The proposed model predicts simi-

lar shape of the ASBS in compression for pe/p < 2.
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Fig. 3 The influence of a from Eq. (25) on the shape of the
ASBS of the proposed model. a = 0.3 selected as a standard
value.

Otherwise, the Modified Cam-clay model predicts non-

realistic shape of the ASBS. In particular, it spans into
the tensile stress region and overpredicts critical state

friction angle in extension.

Figure 5 shows various 3D-views of the ASBS of

the proposed model in the principal stress space for

ϕc = 25◦. In particular, Figure 5 demonstrates that the
ASBS inherits properties of the Matsuoka-Nakai failure

criterion, which has circular deviatoric cross-sections

for ϕm → 0◦ (Fig. 5d) and triangular cross-sections
for ϕm → 90◦ (Fig. 5e).

5 Proposed asymptotic strain rate direction

The basic properties of the asymptotic strain rate di-

rection, expressed here as d = d
A/‖dA‖, have been

discussed in References [12,10,29]. Therein, dA is rep-
resented in terms of the dependency of the angles ψσ

and ψǫ̇ (Fig. 6). This dependency should have the fol-

lowing properties:

1. For prediction of the isotropic state, zero shear strains
(devdA = 0) should be predicted for ϕm = 0◦.

2. For prediction of the critical state, zero volumetric

strains (trdA = 0) should be predicted for ϕm = ϕc.

3. For prediction of the K0 state, K0 should agree with
the empirical formula by Jáky [19]

K0 = 1− sinϕc (26)

4. The limitting directions ±d should correspond to

the mobilised friction angles of 90◦. As noted by

Gudehus [10] (Chapters 2 and 3), these dilatant
state limits correspond to the onset of cracking. Al-

though they are somewhat fictitious, they represent

reasonable limit bounds.
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Fig. 4 Asymptotic state boundary surfaces for critical state
friction angles ϕc = 15◦, 20◦, 25◦, 30◦, 35◦, 40◦. Dashed lines
represent constant mobilised friction angle lines (labels in de-
grees). (a) proposed model, (b) original model for κ∗/λ∗ =
0.1, (c) Modified Cam-clay model.

5. d
A should have a radial deviatoric direction. This is

supported by experimental studies from References

[52,2,20,4].
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Fig. 5 Principal stress space 3D plots of the ASBS of the proposed model for ϕc = 25◦. (a,b,c) views from various angles;
(d) deviatoric view for ϕm ≤ ϕc; (e) deviatoric view for ϕm ≥ ϕc. Color transitions represent constant mean stress cuts.
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Fig. 6 Definition of angles ψσ and ψǫ̇ used in representation
of the asymptotic strain rate direction (from [12,10,29]).

The expression for dA will be set in the form

d
A = −T̂

∗

+ 1X (27)

with T̂
∗

, which is defined as T̂
∗

= T̂ − 1/3, where

T̂ = T/ trT. Eq. (27) directly satisfies properties 1

and 5 for any positive X. Next, the dependency of X

on mobilised friction angle is introduced. With X = 0
for ϕm = ϕc, property 2 is ensured. To include property

4, X = 2/3 for ϕm = 90◦ in triaxial compression and

X = 1/6 for ϕm = 90◦ in triaxial extension.

The following expression forX satisfying these prop-
erties is proposed

X =

[

2

3
− cos 3θ + 1

4
F 1/4
m

]

F
ξ/2
m − sinξ ϕc

1− sinξ ϕc

(28)

where the Lode angle θ is defined as

cos 3θ = −
√
6
tr
(

T̂
∗ · T̂∗ · T̂∗

)

[

T̂
∗

: T̂
∗

]3/2
(29)

cos 3θ = −1 in triaxial compression and cos 3θ = 1 in

triaxial extension. The factor ξ controls the ratio of vol-

umetric and shear strains for ϕm other than 0◦, ϕc and
90◦. ξ was found by an optimisation procedure to make

sure the strain rate direction satisfies approximately the

Jáky [19] formula:

ξ = 1.7 + 3.9 sin2 ϕc (30)

Finally, the expression for dA is as follows:

d
A = −T̂

∗

+

1

[

2

3
− cos 3θ + 1

4
F 1/4
m

]

F
ξ/2
m − sinξ ϕc

1− sinξ ϕc

(31)

The proposed formulation and the original model

yield similar ψσ and ψǫ̇ dependencies, coinciding at
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isotropic (i) and critical (±c) states. Unlike the origi-

nal model, however, the proposed formulation properly
considers also the limitting direction ±d.

-150

-100

-50

 0

 50

 100

 150

-30 -20 -10  0  10  20  30  40  50

ψ
ε 

[°
]

ψσ [°]

i

c

-c

d

-d

explicit ASBS
original model

Fig. 7 Asymptotic strain rate direction demonstrated in
terms of angles ψσ and ψǫ̇ for the proposed and original mod-
els.

Figure 8 showsK0 values predicted by the proposed,

original and Modified Cam-clay models for different val-

ues of ϕc (κ
∗/λ∗ = 0.1 for the original model). The pro-

posed model predictsK0 practically coinciding with the

Jáky [19] equation (26). Both the original and Cam-clay

models overpredict K0.
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Fig. 8 K0 values for different ϕc predicted by the proposed,
original and Modified Cam-clay models (κ∗/λ∗ = 0.1 for the
original model).

6 Model formulation

In this section, complete formulation of the new hy-

poplastic model is described, adopting a general ap-

proach from Sec. 3, with ASBS shape from Sec. 4 and

asymptotic strain rate direction from Sec. 5.

General rate formulation of the model is given by
Eq. (16). The tensor L is represented by isotropic elas-

ticity: that is

L = I +
ν

1− 2ν
1⊗ 1 (32)

where the parameter ν controls the proportion of bulk

and shear stiffness. Effectively, it regulates the shear

stiffness, since the bulk stiffness in the model is con-
trolled by the parameters λ∗ and κ∗ (as shown later).

The asymptotic strain rate direction d is specified
by

d =
d
A

‖dA‖
(33)

where d
A is given by Eq. (31).

The following expression for the factor fd, which

governs the non-linear behaviour inside the state bound-

ary surface, is chosen:

fd =

(

2p

pe

)α

(34)

where α = 2 is controlling the influence of OCR on
non-linear response inside the ASBS. The value of fAd ,

needed in Eq. (16), is calculated using Eq. (34) com-

bined with the proposed ASBS formulation (Sec. 4).
Eq. (17) gives

pA = pe (1− Fm)
1/ω

= pe

( −8I3
I3 + I1I2

)1/ω

(35)

where pA is the mean stress at the ASBS for the given
ϕm. Combination of (35) with (34) yields the expression

for fAd :

fAd = 2α(1− Fm)α/ω (36)

The last component of the model to be defined is the

factor fs. It is specified to ensure that the slope of the

isotropic unloading line in the ln(1 + e)–ln p plane, for
unloading starting from the isotropic normally consoli-

dated state, is given by κ∗. Note that the slope λ∗ of the

isotropic normal compression line is already implicit in
the model formulation, since it has been adopted as a

primary assumption in the derivation of the tensor A.

Algebraic manipulations with the above tensorial equa-
tions reveal that for unloading (volume increase, ė > 0),

the isotropic form of the model is given as:

ṗ =

[

p

λ∗
− 2fs

(

1

3
+

ν

1− 2ν

)]

ė

1 + e
(37)
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Eq. (37) can be compared with ė/(1 + e) = −κ∗ṗ/p,
which leads to an expression for fs

fs =
3p

2

(

1

λ∗
+

1

κ∗

)

1− 2ν

1 + ν
(38)

A complete formulation of the proposed hypoplastic
model is summarised in Appendix.

7 Model parameters

The model requires five parameters, with the same phys-
ical interpretation as the parameters of the Modified

Cam-clay model: ϕc, λ
∗, κ∗, N and ν. ϕc is the critical

state friction angle; λ∗ is the slope of the isotropic nor-

mal compression line in the plane ln(1 + e) vs. ln p; κ∗

controls slope of unloading line in the same plane; N is

the value of ln(1 + e) at the isotropic normal compres-

sion line for p = pr = 1 kPa; and finally the parameter
ν controls the shear stiffness.

The parameter ν has the same effect as the param-

eter r of the original clay hypoplastic model. In fact, a
direct relation between ν of the proposed model and r

of the original model may be found, which reads

ν =
3r (λ∗ + κ∗)− 4κ∗

6r (λ∗ + κ∗) + 4κ∗
(39)

The proposed hypoplastic model can thus be used in
place of the original one without a need for additional

calibration.

The proposed model can be applied in combination
with the intergranular strain concept by Niemunis and

Herle [41] in order to predict properly the soil behaviour

in the very small strain range. While using this concept,
the very small strain stiffness matrix M is given by

M = mRfsL (40)

where mR is a model parameter controlling the shear
modulus. The adopted formulation of the tensor L im-

plies that

M = 2G0L (41)

where G0 is the very small strain shear modulus. Com-

parison of (41) and (40) with the aid of the adopted for-

mulation for the factor fs (Eq. (38)) enables us to cal-

culate the value of the parameter mR from the known
very small strain shear modulus G0 as

mR =
4G0

3p

(

1 + ν

1− 2ν

)(

λ∗κ∗

λ∗ + κ∗

)

(42)

With this parameter mR and the relation between ν

and r from Eq. (39), the proposed and original models

predict identical very small strain shear moduli.

8 Model predictions

8.1 Qualitative comparison with the original model

First, the proposed model will be compared with the

original one using different means of graphical represen-

tation. Parameters used in this evaluation are given in
Tab. 1, label ”eval.” (note these parameters do not cor-

respond to any particular soil experimental data set).

Figure 9 shows the shape of the ASBS, together with re-
sponse envelopes for different states of stress and over-

consolidation. For details on response envelope repre-

sentation, see Gudehus and Maš́ın [12]. Because the
used parameter set involves parameters which imply

reasonable shape of the ASBS of the original model, the

two graphs are very similar. In fact, there is only one

substantial difference in the response of the two models;
the original model produces response envelopes which

rotate with increasing stress deviator, whereas the pro-

posed model adopts isotropic elasticity, which means
that the shape of the response envelopes is not affected

by the stress state. The different formulation of the ten-

sor L influences the model predictions inside the ASBS,
and in most cases causes the proposed model to better

reproduce the experimental data. This will be shown

later in Sec. 8.2.

soil ϕc λ∗ κ∗ N ν/r
eval. 25◦ 0.1 0.01 1 0.2/0.242
Kaolin 27.5◦ 0.065 0.01 0.918 0.35/0.67
Dortmund 27.9◦ 0.057 0.008 0.749 0.38/0.94
Weald (prop.) 24◦ 0.059 0.014 0.8 0.3 (ν)
(orig.) 0.018 0.65 (r)
Brno 22◦ 0.128 0.015 1.51 0.33/0.45
Koper 33◦ 0.103 0.015 1.31 0.28/0.3

Table 1 Parameters of the proposed and original models
used in the simulations (ν specified for the proposed model,
r for the original). ”eval.” denote fictitious parameters used
in evaluation of the model response in Sec. 8.1.

Figure 10 demonstrates an approach to asymptotic

states from some arbitrary state within the asymptotic

state boundary surface. This figure shows stress paths
of constant ψǫ̇ tests plotted in the normalised q/p∗e vs.

p/p∗e plane, together with so-called normalised incre-

mental response envelopes (NIREs, see Maš́ın et al.
[36] for more details) for different strain levels. In both

models, the stress paths and NIREs ultimately con-

verge to the ASBS. The proposed model predicts more

straight approach to asymptotic states and slightly dif-
ferent shapes of NIREs. This is, again, predominantly

caused by the different formulation of the L tensor.

Figure 11 shows normalised undrained stress paths

and normalised deviatoric stress - shear strain curves
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Fig. 9 The shape of ASBS of the original and proposed mod-
els, plotted together with response envelopes at the isotropic
(i) and critical (±c) asymptotic states and in two overconsol-
idated (oc) states.

of the original (b,d) and proposed (a,c) models. The

initial states are located along K0 unloading line. First

of all, it is clear that the models predict different K0

values (q/p values at K0). Similarly to the observa-

tion from Fig. 9, the proposed model predicts more

straight approach to the asymptotic state. Unlike the
original model, the proposed model predicts stress path

of the undrained compression test on normally consoli-

dated specimen which approximately follows the ASBS.
This better reproduces the soil behaviour, as discussed

by Maš́ın and Herle [33]. The two models also predict

slightly different rates of stiffness decrease. This issue

will be discussed in more detail in Sec. 8.2.

8.2 Evaluation using experimental data

In this section, predictions of proposed and original

models will be compared with the experimental data on
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Fig. 10 Stress paths of constant ψǫ̇ tests and incremen-
tal response envelopes plotted in the normalised q/p∗

e
vs.

p/p∗
e
space for tests starting from a common arbitrary state

within ASBS. Values of angles ψǫ̇ in constant ψǫ̇ tests spec-
ified in labels, incremental response envelopes plotted for
‖ǫ‖ = 0.002, 0.008, 0.02, 0.5 (the ‖ǫ‖ = 0.5 NIRE coincides
with the ASBS).

different fine-grained soils. The evaluation of the origi-

nal model using these data have already been presented
in previous publications, where an interested reader can

find additional details. Parameters used in the simula-

tions are summarised in Table 1. Note that ν was not
always calculated from r using Eq. (39), but it was cal-

ibrated specifically to obtain the best match with the

experimental data.

Reconstituted kaolin: The experiments on reconstituted
kaolin clay have been performed by Hattab and Hicher

[14] and adopted for evaluation of different constitutive

models by Hájek et al. [13]. The specimens of kaolin

clay with Atterberg limits wL 40% and wP 20% were
prepared in a consolidometer from a slurry at a water

content of twice the liquid limit. The specimens were

isotropically loaded up to the maximum preconsolida-
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Fig. 11 Stress paths (a,b) and shear strain-deviatoric stress curves (c,d) of compression and extension undrained shear tests
starting from states along K0 unloading line.

tion pressure p0 1000 kPa and then isotropically un-

loaded to the pressure p = p0/OCR, from which the

shear tests at constant mean stress p followed. Alto-
gether 12 shear experiments were reported, at OCR =

1, 2.25, 2.5, 2.7, 3, 4, 5, 8, 10, 20 and 50.

Figure 12a shows stress paths in a normalised plane

q/pe vs. p/pe, Figure 12b presents shear strain vs. devia-
toric stress curves and Figure 12c shows the volumetric

response. The proposed model predicts more straight

approach to asymptotic states (Fig. 12a) and slightly
different non-linear response inside the ASBS (lower di-

latancy rate and higher peak friction angle of the over-

consolidated soil). Otherwise, simulations by the two
models are quite similar and they represent relatively

well the experimental data.

Dortmund clay: The second investigated set of experi-

mental data is on the overconsolidated illitic clay from
tertiary deposits overlying coal seams near Dortmund,

Germany. The experimental data and predictions by

the original model have been presented by Herle et al.

[17]. Figures 13(a,b) show stress paths of three undrained
triaxial tests and predictions by the original and pro-

posed constitutive models. The predicted stress paths

differ in the way the asymptotic state is approached,

but both predictions represent the experimental data

reasonably well. More significant difference is clear from

the predicted shear strain vs. deviatoric stress curves
(Figures 13c,d). The proposed model predicts accurately

the decrease of the tangent shear modulus with shear

strain. On the other hand, the original model represents
the stress-strain curve relatively poorly, as it underes-

timates the original stiffness and also the rate of the

stiffness degradation.

Weald clay: Experimental data on reconstituted Weald

clay by Henkel [15] and Parry [45] represent classical
set of experiments used in the literature to evaluate

different constitutive models. For example, these ex-

periments have previously been adopted by Gudehus
[9] in the evaluation of his visco-hypoplastic model and

by Weifner and Kolymbas [50], who compared perfor-

mance of different hypoplastic models for clays. Weald
clay is an estuarine deposit of the Cretaceous period,

in the natural state heavily overconsolidated, with in-

dex properties wL = 43%, wP = 18% and 40% fraction

of clay minerals [15]. In this evaluation, isotropic load-
ing and unloading tests on reconstituted clay by Henkel

[15] have been adopted, together with undrained triax-

ial compression and extension tests on normally con-
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Fig. 12 Experimental results on reconstituted kaolin clay by Hattab and Hicher [14] and predictions by the proposed and
original models.

solidated and overconsolidated samples published by

Parry [45]. Parry [45] did not present isotropic tests,

but noted that the isotropic response he observed is

practically identical to that published by Henkel [15].

The parameters N , λ∗ and κ∗ have been calibrated

using isotropic loading and unloading tests, as shown in
Fig. 14. Both the models represent almost exactly both

the loading and unloading curves. Note that different

values of κ∗ (Tab. 1) have been adopted for the two

models. This is because the predictions of the isotropic
unloading test differ slightly in the two models due to

different formulation of the pyknotropy factor fd. In

the proposed model, the exponent α in (34) has a fixed
value of 2, whereas in the original model it is a function

of material parameters λ∗, κ∗ and ϕc.

Simulations of the drained and undrained compres-
sion and extension tests on normally consolidated and

overconsolidated samples are shown in Fig. 15; the ini-

tial states are indicated in Fig. 14. The two models
yield similar predictions. The proposed model overpre-

dicts peak strength in drained compression test on over-

consolidated soil; this can be reduced by modifying the
value of a from Eq. (25). The calibration yields rela-

tively high values of the parameter κ∗. This causes the

ASBS of the original model to have unrealistic shape,

as shown in Fig. 16b together with normalised stress
paths of the shear tests. The original model has the

ASBS independent of the model parameters (Fig. 16a),

and thus does not have this shortcoming. An unsatisfac-

tory performance presented by Weifner and Kolymbas

[50] has not been reproduced.

Brno clay: Brno clay is a calcareous illitic silty clay
from Brno, Czech Republic. In its natural state it is of

stiff to very stiff consistency and high plasticity, and

forms more than 100m thick strata in Miocene marine
sedimentary basin of the Carpathian fore-trough. Brno

clay was studied experimentally by Svoboda et al. [48].

The original model was in Ref. [48] used in simulations
of tunnels excavated by means of the New Austrian

Tunnelling Method. The experimental data, together

with simulation by the original and proposed models,

are shown in Fig. 17. Figure 17a shows results of oe-
dometric test on undisturbed Brno clay sample, and

Figures 17b,c show stress paths and deviatoric stress -

shear strain curves of undrained shear tests on undis-
turbed samples.

The two models yield practically identical predic-

tions of the oedometric test. In shear, the response by
the two models differ, and the difference is qualitatively

the same as that observed in Dortmund clay simulations

(Fig. 13). The stress paths are slightly different and, in

particular, the proposed model predicts more gradual
decrease of the shear stiffness with shear strain, which

better agrees with the experimental data.

Koper soft silty clay: The last soil investigated is a soft

silty clay from Quaternary deposits in Koper, Slove-

nia. The material may be characterized as a gray, high
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Fig. 13 Undrained triaxial tests on overconsolidated Dortmund clay and their representation by the proposed and original
models. Experimental data from [17].
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Fig. 14 Results of isotropic loading and unloading tests on
reconstituted Weald clay; experimental data by Henkel [15],
compared with predictions by the proposed and original mod-
els. Initial states of the shear tests on normally consolidated
(NC) and overconsolidated (OC) indicated.

plasticity carbonatic silty clay with the Atterberg lim-

its wL = 64% and wP = 34%. Laboratory experiments,

described by Maš́ın et al. [31], have been performed
on undisturbed specimens trimmed from block samples

excavated from a depth of 3.4 m. The calibrated pa-

rameters were in Ref. [31] used in simulations of a deep

excavation. Figure 18 shows results of three undrained

triaxial shear tests. The stress paths indicate the soil is
very soft, close to normally consolidated conditions. Un-

like in the case of overconsolidated clays (Figs. 13 and

17), the two models now yield very similar response.

9 Conclusions

A new hypoplastic model for fine-grained soils has been

proposed. The model is based on an approach which

enables us to specify explicitly the asymptotic state
boundary surface and corresponding asymptotic strain

rate direction. The model eliminates several shortcom-

ings of the original clay hypoplastic model from [24] and
improves its predictions, while using equivalent mate-

rial parameters. The main advantage of the new model

is in the independent formulation of the individual model

components. The new model is thus more suitable to
form a basis for further developments and enhance-

ments.
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Fig. 15 Drained and undrained compression and extension tests on normally consolidated and overconsolidated samples of
reconstituted Weald clay. Experimental data by Parry [45] compared with predictions by the proposed and original models.

Appendix

The Appendix summarises complete formulation of the

proposed hypoplastic model. The general rate formula-

tion reads

T̊ = fsL : D− fd
fAd

A : d‖D‖ (43)

with

L = I +
ν

1− 2ν
1⊗ 1 (44)

A = fsL+
T

λ∗
⊗ 1 (45)

fs =
3p

2

(

1

λ∗
+

1

κ∗

)

1− 2ν

1 + ν
(46)

where ν, λ∗ and κ∗ are model parameters, p = − trT/3,

and 1 and I are second- and fourth order unity tensors

respectively. The factor fd reads

fd =

(

2p

pe

)α

(47)

with α = 2 and the equivalent pressure

pe = pr exp

[

N − ln(1 + e)

λ∗

]

(48)

where N is a parameter and pr is a reference stress

equal to 1 kPa. The factor fAd reads

fAd = 2α(1− Fm)α/ω (49)

where Fm is the Matsuoka-Nakai factor calculated from

Fm =
9I3 + I1I2
I3 + I1I2

(50)

and the exponent ω reads

ω = − ln
(

cos2 ϕc

)

ln 2
+ a

(

Fm − sin2 ϕc

)

(51)

where ϕc is a parameter and a = 0.3. The stress invari-
ants I1, I2 and I3 are given by

I1 = trT (52)

I2 =
1

2

[

T : T− (I1)
2
]

(53)

I3 = detT (54)

Finally, the asymptotic strain rate direction d is calcu-
lated as

d =
d
A

‖dA‖
(55)
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Fig. 16 The shape of the ASBS of the original and proposed
model for Weald clay parameters (Tab. 1), plotted together
with normalised stress paths of the shear tests from Fig. 15.

where

d
A = −T̂

∗

+

1

[

2

3
− cos 3θ + 1

4
F 1/4
m

]

F
ξ/2
m − sinξ ϕc

1− sinξ ϕc

(56)

with the Lode angle θ

cos 3θ = −
√
6
tr
(

T̂
∗ · T̂∗ · T̂∗

)

[

T̂
∗

: T̂
∗

]3/2
(57)

exponent ξ

ξ = 1.7 + 3.9 sin2 ϕc (58)

and the stress measure T̂
∗

= T/ trT−1/3. The model
requires five parameters ϕc, λ

∗, κ∗, N and ν, and state

variables T and void ratio e.

References

1. Ali, A., Meier, T., Herle, I.: Numerical investigation of
undrained cavity expansion in fine-grained soils. Acta
Geotechnica 6, 31–40 (2011)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

ln
 (

e+
1)

 [-
]

ln σa/pr [-]

normal compression line
experiment

explicit ASBS
original model

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900

q 
[k

P
a]

p [kPa]

experiment
explicit ASBS
original model

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.05  0.1  0.15  0.2

q 
[k

P
a]

εa [-]

experiment
explicit ASBS
original model

(c)

Fig. 17 Oedometric tests on undisturbed Brno clay (a),
undrained triaxial shear tests on undisturbed Brno clay (b,c).
Predictions by the proposed and original models; experimen-
tal data from [48].

2. Bardet, J.P.: Lode dependences for isotropic pressure-
sensitive elastoplastic materials. Journal of Applied Me-
chanics 57, 498–506 (1990)

3. Butterfield, R.: A natural compression law for soils.
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47. Svoboda, T., Maš́ın, D.: Comparison of displacement
fields predicted by 2D and 3D finite element modelling
of shallow NATM tunnels in clays. Geotechnik 34(2),
115–126 (2011)
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