Progress of sperm Izumo1 relocation during spontaneous acrosome reaction

Lukas Ded1, Natasa Sebkova2,3, Katerina Vesela2, Jana Peknicova1 and Katerina Dvorakova-Hortova2

1Laboratory of Reproductive Biology, Institute of Biotechnology, Academy of Sciences of the Czech Republic, v. v. i., Prague 4, Czech Republic, 2 Biocev group, Department of Zoology and 3 Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, 128 44, Czech Republic

Abstract

It has been recently shown in mice that sperm undergo acrosome reaction (AR) by passing through cumulus cells, furthermore the acrosome-reacted sperm can bind to zona pellucida, and consequently fertilize the egg. During AR, the relocation of the primary fusion protein Izumo1 into the equatorial segment is crucial for sperm-egg fusion. There is a high rate of spontaneous acrosomal reaction in rodents, with up to 60% in promiscuous species. The aim was to find out, whether the relocation of Izumo1 happens during the physiological spontaneous AR, or whether it occurs only in sperm with induced AR with further correlation to species-specific mating behaviour. Immunofluorescent detection of Izumo1 protein dynamics during the process of in vitro capacitation, spontaneous acrosome induced AR was monitored. Our results show that in a promiscuous AR there is a clear Izumo1 relocation from the acrosomal cap to the equatorial segment and further on to the whole sperm head. Additionally, there is positive tail tyrosine phosphorylation associated with hyperacrosome. Therefore, spontaneously acrosome reacted sperm have the same fertilizing potential as those after induced AR. Moreover, the beginning and progress of Izumo1 relocation and tail tyrosine phosphorylation positively correlates with the level of promiscuity and the acrosome instability in Apodemus species. The findings that crucial molecular changes essential for sperm-egg fusion represented by dynamic movements of Izumo1 also happen during spontaneous AR are vital for novel understanding of fertilization in mice. Moreover, this may represent a unique mechanism of accelerating the fertilization process in a highly promiscuous environment under selective pressure of intra-specific sperm competition.

Figure 1

I and II Scheme of Izumo1 and PNA staining patterns distributions in Balb/c mouse spermatozoa. Patterns detected during BAGE sperm capacitation in vitro incubation (detected in time 60 min). (A) PNA/Izumo1 merge. (B) Izumo1 relocation after AR. (C) PNA only. (D) Izumo1 relocation during AR. (E) No staining. (F) No relocation after AR.

Figure 2

A Scheme of Izumo1 relocation across the mouse sperm head. Acrosomal cap (AC), equatorial segment (ES), post-acrosomal region (PAN), apical equatorial segment (AES), whole equatorial segment (WES), whole sperm head (WSH).

Figure 3

I The progression of Izumo1 relocation during spontaneous AR. (A) BALB/c. (B) A. microps. (C) A. sylvaticus. Immunofluorescent detection of Izumo1 (green) and acrosome integrity by PNA-lectin (red) during in vitro incubation (0, 5, 10, 20, 40, 60, 80 and 90 min). Representative results shown. Scale bar represents 4 μm. II The timing of Izumo1 relocation correlates with the promiscuity behaviour among individual species. Bars indicate the median time (±i.e.), when more than 5% of sperm show the appropriate Izumo1 pattern for the first time, from the whole Izumo1 positive sperm population (AES) or from the population of spontaneously acrosome-reacted sperm (AES, WES, WSH), respectively. Error bars indicate the SEM. The statistical significance of the differences in the individual Izumo1 patterns abundances among individual strains is indicated by asterisk (*p ≤ 0.05). III Arrows at the end of bars indicate the differences in the further progression of the Izumo1 relocation to the WSH in subsequent times of incubation. Acorosomal cap (AC), apical equatorial segment (AES), whole equatorial segment (WES), whole sperm head (WSH).

Figure 4

I Statistical analysis of Izumo1 pattern distribution during spontaneous AR among individual species. A Differences in the Izumo1 pattern proportions (AES, WES, WSH) among species in selected times of incubation. Bars denote the arithmetic mean of individual Izumo1 pattern (AES, WES, WSH) in appropriate species and time of incubation (%). 200 cells were counted in 6 individual samples per one time. Error bars indicate the SEM. The statistical significance of the Izumo1 pattern proportions abundances among individual species in different times of incubation is indicated by asterisk (*p ≤ 0.05). BALB/c, A. microps, N, A. sylvaticus. (B) The species specific rate of spontaneous AR in the whole sperm population. Points indicate the arithmetic mean of the number of acrosome-reacted sperm. Error bars denote SEM. Asterisks indicate the first time when the difference between individual species is significant (*p ≤ 0.05).