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Molecular mechanisms of epigenetic inheritance
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Prions

Infectious proteins
Can cause neurodenerative diseases

Kuru

Creutzfeldt—Jakob disease

Bovine spongiform encephalopathy
(BSE) (mad cow disease)

Yeasts: [PSI+], prion of Sup35 protein.

Termination of translation. Prion form
leads to translation over stopcodon.
Reveals hidden genetic variation.

PrP<protein

Conversion

PrPs<, prion conformation



Ontogenetic development and
Conrad Waddington’s epigenetic landscape
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Epigenetic changes often induced by environment
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DNA methylation
histon modifications
small non-coding RNAs

Fertility, metabolism, lifespan, mental health etc.



Phenotypic plasticity

« The same genotype, different phenotypes in different environments.

TRENDS in Ecology & Evelution




Phenotypic plasticity

Sexual dimorphism




Phenotypic plasticity

Induced resistance against herbivors and pathogens in plants

Holeski et al. (2012)



Molecular mechanisms of epigenetic inheritance
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Molecular mechanisms of epigenetic inheritance
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Small non-coding RNAs can induce changes of chromatin
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RNA pool

Epigenetic inheritance mediated
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Epigenetics

Originally discipline about cell differentiation during ontogeny
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Transgeneration epigenetic inheritance?



Epigenetic reprogramming of DNA

DNA METHYLATION

Post-fertilization reprogramming

Imprint maintenance

Germline reprogramming

Maintenance at some IAP
elements and rare single-copy loci
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Not complete. Some genes can escape reprogramming
(e.g. imprinted genes in mammals, retrotransposons).

Birth
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Genomic imprinting

Expression only from a maternal or paternal allele

Epigenetic marks are established in the germline of parents and are
inherited to offspring.
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Genomic imprinting
Theory of parental conflict
(David Haigh, 1991)

Paternally expressed genes (e.g. 1gf2): support prenatal growth
Maternally expressed genes (e.g. Igf2r): inhibit prenatal growth

maternal imprinting | _,t:__p_._ W, paternal imprinting
limits use of matemal resources | ¥ 1 \ maximizes use of maternal resources
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Genomic imprinting in angiosperms (endosperm)
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Aberrant genomic imprinting

Angelman Prader-Willi
syndrom syndrom

paternal

disomy j j

maternal
} } disomy

uniparental disomy chr 15



Genomic imprinting is responsible for the inviability
of mammalian uniparental embryos

1984: Davor Solter a Azim Surani
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Linaria vulgaris

peloric form normal form

Live specimen of Peloria Mormal Linaria (toadflax)

» Peloric form caused by methylation of the Lcyc gene

« Stable inheritance through many generations.



Transgenerational epigenetic inheritance
vs. maternal effect
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Maternal effect in

Agouti viable yellow (AY)

A%/a mice

AW alele of the gene agouti originated
by insertion of retroelement.

« AW alely uses the promoter of the
retroelement and its activity depends
on the level of the retroelement
methylation. This is affected by diet of
the mother (folic acid, vit B12).

» Levels of methylation and coat color
to some degree inherited through
generations.




stress

Lack of maternal care, separation of |

progeny from the mother, social
stress, trauma

Behavioral defects in progeny
(psychological problems,
depression, anxiety, risky
behaviors).

Changes in DNA methylation
and histon modifications in
genes expressed in brain.

Can be inherited through
multiple generations.



Inheritance of metabolic diseases
induced by lack of food or smoking

« Lack of food in childhood or during
pregnancy
- lipid metabolism disorder, diabetes
in childs as well as grandchild.

* Smoking or chewing of betel
—> obezity, metabolic syndrom in
children.

Famine in Holland (1944-1945)



Paramutation

Paramutation = the epigenetic transfer of
information from one allele of a gene to
another allele

Paramutation mediated by small RNAs
expressed from Kit allele affect expression
from the second allele.

Small RNAs are inherited through gametes to
next generation.

Injection of these RNAs to embryos cause the
Kit phenotype (white tails).
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Transformation of wild-type petunia (left) with a transgene
encoding a pigment protein can lead to loss of pigment (white
areas) owing to cosuppression of the transgene and
homologous endogenous plant gene.



Epigenetic changes and evolution

Epigenetic changes represent an important source of phenotypic

variability.

Are often induced by changes of environment (periodic and predictable
changes can lead to evolution of adaptive phenotypic plasticity).

Are reversible.

Can affect the mutation rate.
Fixation of originally
epigenetic phenotype by
genetic change.

Genetic assimilation.

DOI:10.1111/nyas. 14992

PERSPECTIVE

AN NALS OF THE NEW YORK
ACADEMY OF SCIENCES

Epigenetic inheritance in adaptive evolution

Gonzalo Sabaris®?* | Maximilian H. Fitz-James%# | Giacomo Cavalli*?

Institute of Human Genetics, CNRS,
Montpellier, France

2University of Montpellier, Montpellier,
France

Correspondence

Giacomo Cavalli, Institute of Human Genetics,
CNRS, UMR 2002, Montpellier, France.
Email: giacomo.cavalli@igh.cnrs.fr

*#Equal contribution.

Fundinginformation

European Research Council, Grant/Award
Number: 788972; the European Union
(CHROMDESIGN Project, under the Marie
Sklodowska-Curie, Grant/Award Number:
813327; French National Cancer Institute,
Grant/Award Number: (INCa PLBIO18-362);
Fondation Pour la Recherche Médicale,
Grant/Award Number: DEI20151234396;
MSDAVENIR Foundation, Grant/Award
Number: GENE-IGH; Agence Nationaledela
Recherche (Under the E-RARE Projects

Abstract

Since the Modern Synthesis, our ideas of evolution have mostly centered on the infor-
mation encoded in the DNA molecule and their mechanisms of heredity. Increasing
evidence, however, suggests that epigenetic mechanisms have the potential to perpet-
uate gene activity states in the context of the same DNA sequence. Here, we discuss
recent compelling evidence showing that epigenetic signals triggered by environmen-
tal stress can persist over very long timeframes, contributing to phenotypic changes in
relevant traits upon which selection could act. We argue that epigenetic inheritance
plays an important role in fast phenotypic adaptation to fluctuating environments,
ensuring the survival of the organisms of a population under environmental stress in
the short term while maintaining a “bet-hedging” strategy of reverting to the origi-
nal state if the environment returns to standard conditions. These examples call for
a reevaluation of the role of nongenetic information in adaptive evolution, raising

questions about its broader relevance in nature.
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adaptation, assimilation, environmental change, epigenetic inheritance, genetic, Waddington



« Epigenetic inheritance can be important especially in sessile
organisms (plants), where progeny is exposed to the same

environment as parents.

Transgenerational epigenetic
Inheritance in plants

* Plants do not have separated
germ and somatic line
(Weisman barier).

» Global epigenetic
reprogramming is not so
substantial as in animals.

« Small non-coding RNAs can
spread through the plant using
vascular tissues
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Sarkies and Miska (2014)



Epigenetic inheritance and lamarckism

Inheritance of acquired characters

Jean Baptiste Lamarck

Diagram showing elongation of neck in giraffe according to Lamarck,
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