Conformationally Dependent Photodynamics of Glycine

Eva Muchová*, Petr Slavíček†, Andrzej L. Sobolewski‡, Pavel Hobza*

*Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Prague [†]Institute of Chemical Technology, Prague [‡]Institute of Physics, Polish Academy of Science, Warsaw

Motivation

 Addressing a general question about the possible role of ground state conformations on excited state dynamics – the photochemical properties of amino acids are very sensitive

not only to environment but also to conformation.

Recently reported experimental study of conformer-dependent S₁ lifetime of L-phenylalanine suggests that lifetimes of S₁ differ by a factor of three for different conformers.

Ab initio non-adiabatic molecular dynamics

Time-dependent Schroedinger equation is solved using Full Multiple Spawning algorithm⁶

Wave function ansatz Ψ

$$\Psi = \sum_{I} \chi_{I}(R;t) \phi_{I}(r;R)$$
 electronic wavefunction

time-dependent nuclear wavefunction associated with Ith state

Nuclear wavefunction – superposition of frozen Gaussian basis functions Substituting the wavefunction ansatz into nuclear Schroedinger equation evolution of the coefficients $\frac{dC^{I}(t)}{dt} = -i(S_{IJ}^{-1})\left((H_{II} - i\dot{S}_{II})C^{I} + \sum H_{IJ}C^{J}\right)$

→ N-H....O=C

arrangement

Glycine • S_0 Glycine is a nonrigid (floppy) system \rightarrow a large number of conformers – 2 main types The minime are concreted by small barriers

The minima are separated by small barriers that can be easily overcome (highest barrier is ~ 940 (III) and 740 (II) cm⁻¹ for interconversion to global minimum I)²

•
$$S_1$$

 $n_0 \rightarrow \pi^* 6.00 \text{ eV}$ (experiment³ ~ 5.8-6.0 eV) \swarrow

The new basis functions are "spawned" in the region of high non-adiabatic

Time \rightarrow

Simulation details

coupling

Π

Electronic structure:

CASSCF wavefunction – SA3(6,6) with 6-31G* and 6-31+* on N basis set Dynamics:

Initial trajectories sampled according to Wigner distribution function computed for the initial vibrational ground state. timestep 10 a.u. (0.24 fs).

Dynamics started on S_1 using for each conformer its ground state minimum geometry. 10 trajectories for each group of conformers.

Results

conformers having N-H...O=C arrangement – conformers I and II

The values are for conformer II, CASPT2/6-31G*, 6-31+G* on N atom

Possible photophysical pathways

Localization of conical intersection: CASSCF/6-31G* and 6-31+G* on N; SA3(6,6) (The energies and the character of excited states was checked by using the RICC2 method with cc-pVTZ and aug-cc-pVDZ on N and O basis set with added diffuse s and p functions on H atom (with coefficient 0.02) on the geometries of the conical intersections) Dynamic correlation: using CASPT2 method (level shift 0.3 Hartree)

S₁/S₀ intersection

 $n_{N} \rightarrow R + \sigma^{*} 6.65 \text{ eV}$

C=O bond stretching $(n\pi^*/S_0)$

1.7 Å

the deexcitation process leads to **vibrationally excited molecule** in the ground state

S₂/S₁ intersection

- NH₂ planarization and
 N-H bond stretching
 energetically very
 close to the Franck Condon region
- Energetics

In the first **50~100 fs** – population transfer to S_2 through the CI S_2/S_1 between $n\pi^*$ and $n\sigma^*$ states

In ~125-250 fs – population transfer to S_0 through the CI S_1/S_0 between the dissociative no* and the ground state (structure a and b).

The main channel is **H-atom loss** (structure a and b)

conformers having N-H...O-C arrangement – conformer III
 In the first ~25 ps – no population transfer from S₁ to S₀ was observed.

The rotation along the C-C bond does not take place.

Conclusion

• The main process is photofragmentation of glycine leading to the release of H-atom from NH₂ group.

the channel leads to a **fragmented molecule** in the ground state

the dissociation along the N-H coordinate was observed for neutral aromatic molecules⁴

H-atom transfer $(n\pi^*/S_0)$

the channel leads to a diol – unstable on S_0 the H-atom transfer was observed in β -turn⁵ energetically lowest CI **S**₁/**S**₀ 4.60(4.80) H-atom loss

> $S_1/S_0 4.01(3.81)$ H-atom transfer

S₁ min* 3.44(3.37)

S₀

CASSCF energies (CASPT2 are given in parenthesis) in eV *for conformer II

• The lifetimes for conformers having **N-H...O=C** arrangement is much shorter than for conformers having **N-H...O-C** arrangement (the difference is at least 2 orders of magnitude)

 \rightarrow glycine conformers close in energy in the ground state show significantly different photodynamics

Acknowledgement

Project LC512 of Ministry of Education Project 203/05/H001 of Grant Agency of ČR

FMS-Molpro Ben Levine, Todd J. Martinez

References

¹T. Hashimoto; Y. Takasu; Y. Yamada; T. Ebata *Chem. Phys. Lett.* 421(2006) 227.
 ²O. Bludský;J. Chocholoušová;J. Vacek;J. Huisken;P. Hobza *J. Chem. Phys.* 113(2000) 4629.
 ³Inagaki, T. *Biopolymers* 12(1973) 1353.
 ⁴ A. L. Sobolewski; W. Domcke et al. *Phys. Chem. Chem. Phys.* 4(2002) 1093.

⁵ A. L. Sobolewski, W. Domcke et al. *Phys. Chem. Chem. Phys.* 4(2002) ⁵ A. L. Sobolewski, W. Domcke Chem. Phys. Chem. 7(2006) 561.

⁶ M. Ben-Nun, J. Quenneville, T. J. Martinez *J. Phys. Chem.* A 104(2000) 5171.

