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Abstract

The ease of obtaining genotypic data from wild populations has renewed interest in the

relationshipbetweenindividualgeneticdiversityandfitness-relatedtraits(heterozygosity–

fitnesscorrelations,orHFC).Herewepresentacomprehensivemeta-analysisofHFCstudies

using powerful multivariate techniques which account for nonindependence of data. We

comparethesefindingswiththosefromunivariatetechniques,andtesttheinfluenceofarange

of factors hypothesized to influence the strength of HFCs. We found small but significantly

positive effect sizes for life-history, morphological, and physiological traits; while theory

predicts higher mean effect sizes for life-history traits, effect size did not differ consistently

with trait type. Newly proposed measures of variation were no more powerful at detecting

relationships than multilocus heterozygosity, and populations predicted to have elevated

inbreeding variance did not exhibit higher mean effect sizes. Finally, we found evidence for

publication bias, with studies reporting weak, nonsignificant effects being under-repre-

sentedintheliterature. Ingeneral,ourreviewshowsthatHFCstudiesdonotgenerallyreveal

patterns predicted by population genetic theory, and are of small effect (less than 1% of the

varianceinphenotypiccharactersexplained).Futurestudiesshouldusemoregeneticmarker

dataandutilizesamplingdesignsthatshedmorelightonthebiologicalmechanismsthatmay

modulate the strength of association, for example by contrasting the strength of HFCs in

mainlandandislandpopulationsofthesamespecies,investigatingtheroleofenvironmental

stress, or by considering how selection has shaped the traits under investigation.
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Introduction

Evolution occurs when variation in fitness is transmitted

from one generation to the next, and when that variation

has a genetic basis. Hence, understanding how genetic

variation underpins individual fitness in populations is

crucial to our understanding of evolution (Merilä &

Sheldon 1999; Merilä & Crnokrak 2001; Barton & Keightley

2002; Hansson & Westerberg 2002; Ellegren & Sheldon

2008; Leinonen et al. 2008). There have been many

approaches taken to try to understand the genetic causes
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of variation in fitness in populations, but an increasingly

popular approach has been to seek to relate within-

individual variation (some measure related to hetero-

zygosity) at genetic marker loci to variation in fitness, or

variation in characters that are potentially related to

fitness. This increasing popularity is probably driven by

two developments. First, the increased ease in obtaining

genetic data, and second the increased focus on long-term

population studies that allow characterization of selection

in wild populations (see Kruuk & Hill 2008). The primary

aim of this quantitative review is to assess the evidence for

relationships between within-individual variation and

fitness traits in animal populations. We begin with a brief

review of the theoretical framework before the analysis of

existing patterns.
� 2009 Blackwell Publishing Ltd



MULTIVARIATE META-ANALYSIS OF HFCS 2 74 7
A brief review of hypotheses explaining heterozygosity-
fitness correlations

Estimates of the relationship between individual genetic

diversity and individual measures of life-history, morpho-

logical and physiological traits have become known

collectively as heterozygosity-fitness correlations (HFC).

Three hypotheses have been proposed to account for the

existence of significant HFCs (reviewed in Hansson &

Westerberg 2002), all of which assume that genetic

diversity at marker loci reflects genetic diversity at loci that

affect trait variation. First, functional overdominance may

occur when the markers used to estimate genetic variation

are themselves expressed (e.g. allozyme loci, MHC loci), have

an effect on fitness, and are thus under direct selection

(reviewed in David 1998). This is often referred to as the

‘direct effect’ hypothesis (Mitton 1997; David 1998). While

this hypothesis was important for early studies of HFCs,

when the use of allozyme markers was widespread, it

does not readily explain why fitness is often found to be

correlated with genetic diversity measured with markers

assumed to be selectively neutral such as microsatellites

(Goldstein & Schlötterer 1999), although see Price et al.

(1997), Ranum & Day (2002), Streelman & Kocher (2002)

and Westgaard & Fevolden (2007) for examples of non-

neutral microsatellites.

Two alternative hypotheses have been proposed to

account for associations between neutral markers and

fitness traits. The first, the ‘local effect’ hypothesis (David

et al. 1995; Lynch & Walsh 1998; pp. 288–290; Hansson &

Westerberg 2002), invokes associative overdominance

(Ohta1971) as the explanation: the apparent fitness increase

with increasing heterozygosity at marker loci is due to non-

randomassociationoftheselociwithlociaffectingfitness—

that is, the marker and fitness loci are in linkage disequilib-

rium (LD, David 1998). A classic model of this is repulsion

phase disequilibrium, where two linked loci with segregat-

ing deleterious recessives produce gametes which carry

the recessive at only one locus; if a marker is linked to these

two loci, heterozygotes at this locus will have higher fitness

because they are homozygous for neither deleterious reces-

sive. One common misconception is that these loci need to

be in close chromosomal proximity (i.e. physically linked).

While this may often be the case, it is possible for physically

unlinked loci to be in linkage disequilibrium due to a wide

range of demographic processes (Briscoe et al. 1994; Bierne

et al. 2000; Hedrick 2005), and it has thus been suggested

that gamete phase disequilibrium would be a better term

for this phenomenon (Crow & Kimura 1970; Hedrick 2005).

Local effects have been increasingly implicated in HFCs

(e.g. Hansson et al. 2001; Acevedo-Whitehouse et al. 2006;

Lieutenant-Gosselin & Bernatchez 2006; von Hardenberg

et al.2007).While itmightseemsurprisingthatmanystudies

have chosen markers that just happen to be in LD with the
� 2009 Blackwell Publishing Ltd
fitnesstraitunderinvestigation,recentempiricalstudieshave

shown that LD can extend over many hundreds of kilobases,

and be maintained for hundreds of generations (Laan &

Pääbo 1997; Wright et al. 1999; Reich et al. 2001; Nordborg

& Tavaré 2002; Hansson et al. 2004; although see also Bierne

et al.2000;Dunninget al.2000;Edwards&Dillon2004).

The final hypothesis invoked to explain HFCs detected

with neutral markers is the ‘general effect’ hypothesis

(David et al. 1995; Lynch & Walsh 1998; Hansson & Wester-

berg 2002). Here the apparent fitness increase with increas-

ing heterozygosity at marker loci is due to the nonrandom

association of diploid genotypes in zygotes and reflects the

fitness cost of homozygosity at loci throughout the genome

— that is the marker and fitness loci are in identity disequi-

librium (ID, David 1998). ID is caused by variance in the

inbreedingcoefficient, f,of individualswithinapopulation,

because inbred individuals will be relatively homozygous

throughout their genome due to recent allelic co-ancestry,

and as such will also be homozygous at marker loci (Weir

& Cockerham 1973; Hansson & Westerberg 2002; Coltman

& Slate 2003), whereas in relatively outbred individuals the

coupling of heterozygosity at marker and fitness loci will

be weaker. Populations suffering outbreeding depression

would be expected to exhibit negative HFCs, whereas

inbreeding depression will result in positive HFCs. The

general effect hypothesis is the only hypothesis invoking

variance in inbreeding as an explanation for HFCs (Slate

et al. 2004). General effects, and by extension inbreeding

depression, are commonly suggested to explain HFCs in

natural populations (e.g. Rossiter et al. 2001; Bensch et al.

2006; Fossøy et al. 2008; Rijks et al. 2008) although the extent

to which heterozygosity measured at a few loci can truly

reflect levels of genome-wide diversity is a contentious

issue (Balloux et al. 2004; Slate et al. 2004; Hansson &

Westerberg2008;althoughseeAparicioet al.2007).

As the general effect hypothesis relies on variance in

inbreeding within populations, if this hypothesis is correct,

the strength of the relationship between heterozygosity

and fitness will depend on the variance of f in the popula-

tion; hence, highly inbred populations with low variance in

f would not be expected to exhibit strong HFCs due to gen-

eral effects any more than outbred populations would (Bal-

loux et al. 2004; Slate et al. 2004; Overall et al. 2005).

Similarly, populations that have undergone historical or

prolonged bouts of inbreeding may have successfully

purged much of their mutational load (Charlesworth &

Charlesworth 1987; Crnokrak & Barrett 2002), and the rela-

tionship between heterozygosity and fitness attributable to

general effects might thus be lower (Reed & Frankham

2003), although the degree of purging will be dependent on

the extent to which deleterious alleles result in lowered fit-

ness (Wang et al. 1999; Crnokrak & Barrett 2002), and

whether the purging occurs via drift or nonrandom mating

(Glémin 2003).
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Clearly then, the demographic history of populations is

potentially an important factor in generating HFCs. Local

effects are more likely to be detected when levels of LD are

high, hence local effect HFCs might be expected in small

populations due to genetic drift (Hill & Robertson 1968;

David 1998), populations that have recently expanded in

numbers, for example after release from a genetic bottle-

neck or expansion into a new range (Wall et al. 2002; Gaut &

Long 2003) and in recently admixed populations (Briscoe

et al. 1994). General effects are more likely to be detected in

those populations with a high variance in the inbreeding

coefficient f, as levels of ID will be elevated in such popu-

lations, although genetic purging in some populations

may act to obscure this relationship somewhat. It is

thus surprising that many studies have pooled samples

from multiple populations or subpopulations (e.g. Aceve-

do-Whitehouse et al. 2005; Gage et al. 2006; Ortego et al.

2007; Välimäki et al. 2007). Demographic impacts on the

strength of HFCs may be obscured in such studies. Even

worse, spurious relationships may be generated, if combin-

ing results from several populations reveals HFCs that are

not present within the component populations (Slate &

Pemberton 2006). Previous meta-analyses in vertebrate

populations have also largely failed to take population

demographic history into account (although see Reed &

Frankham 2001). Strong effects in small and/or inbred pop-

ulations may have been diluted by weak or nonexistent

effects in large and/or outbred populations when results

are pooled for meta-analysis, or alternately could have

spuriously inflated global estimates of mean effect size,

depending on the overall contribution in the literature of

studiesfrominbredandoutbredpopulations.
Quantitative genetics of fitness and nonfitness traits

An alternative approach to understanding genetic influences

on fitness, and related traits, in wild populations has

involved the use of the tools and conceptual framework of

quantitative genetics. Several comparative studies in the

1980s (Gustafsson 1986; Mousseau & Roff 1987; Roff &

Mousseau 1987) confirmed the expectation that traits closely

associated with individual fitness would have lower

heritabilities than traits less tightly linked with fitness.

More recent work has shown that the low heritability of

fitness traits can be accounted for by high levels of residual

variance (especially environmental variance) rather than

low levels of additive genetic variance (Price & Schluter

1991; Kruuk et al. 2000; Wilson et al. 2006), and that, when

scaled correctly, fitness traits can have higher additive

genetic variance than nonfitness traits (Houle 1992; Kruuk

et al. 2000; Merilä & Sheldon 2000; Barton & Keightley 2002;

McCleery et al. 2004; Coltman et al. 2005; Blomqvist 2009).

Since fitness traits are expected to have a more complex

polygenic architecture than morphological or physiological
traits (Merilä & Sheldon 1999), this may also result in

greater opportunity for correlations between fitness traits

and neutral marker loci. Given that inbreeding depression

is due to nonadditive genetic effects (Charlesworth &

Charlesworth 1999; Slate et al. 2000; Roff & Emerson 2006;

but see Hill et al. 2008), and the evidence that fitness traits

are more strongly influenced by inbreeding (e.g. Crnokrak

& Roff 1995; Van Buskirk & Willi 2006), then we may

predict that (i) the relatively higher ratio of dominance to

additive variance, and polygenic architecture, of fitness

traits should result in stronger HFCs for fitness traits

when compared with nonfitness traits, and (ii) that this

difference should be especially pronounced in inbred

populations.
Scope of this review

Here we report a multivariate meta-analysis of studies that

have assessed the association between heterozygosity (also

commonly referred to as marker-based diversity, MBD)

and variation in measures of fitness in animal populations.

Meta-analysis provides a quantitative approach to synthesize

research findings addressing a common research question;

this quantitative approach allows the assessment of the

importance of potential causes of variation in the strength

of relationships (e.g. methodology, or in the case of HFCs,

population history, type of fitness measures), and also

allows for the exploration of publication bias. Meta-analysis

has been used several times to address the importance of

individual genetic diversity for individual fitness among

animal (Britten 1996; Reed & Frankham 2001; Coltman &

Slate 2003; Reed & Frankham 2003) and plant (Leimu et al.

2006) species. However, only one study (Coltman & Slate

2003) concentrated on neutral microsatellite markers,

which have now largely replaced other types of markers

such as allozymes and restriction fragment length poly-

morphisms (RFLP) as the marker of choice in such studies,

as direct effects of the scored loci are assumed to be

negligible. Apart from the very large number of studies

published since, there is also growing acceptance of

hypothesesrelating population demography to the existence

of HFCs (e.g. Rowe et al. 1999; Hansson & Westerberg

2002; Cena et al. 2006; Leimu et al. 2006), although there

has been no formal assessment of the explanatory power of

these hypotheses. All previous HFC meta-analyses have

been conducted using univariate methods. Recently, an

accessible implementation of multivariate methods which

use a mixed-effects model framework has become avail-

able (Hedges 1983; Nam et al. 2003; Nakagawa et al. 2007).

Such methods help to solve an important and common

problem in meta-analysis: that of nonindependence of

effect size estimates, for example when a disproportion-

ately large number of effect size estimates are provided

for one study population, or species (Nakagawa et al.
� 2009 Blackwell Publishing Ltd
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2007). These methods also allow for the nesting of studies

by taxonomic grouping to correct a further possible source

of nonindependence in data sets: that of shared

evolutionary history. Furthermore, these methods also

allow simultaneous consideration of the effect of multiple

moderator variables.

This paper aims to review the current literature on HFCs

by collating all HFC estimates published using microsatel-

lite markers in animal populations up to May 2008, along

with any unpublished studies we could identify. We had

seven principal objectives: (i) to compare and contrast

results from univariate and multivariate meta-analyses; (ii)

to assess the evidence for a continued publishing

bias in this field in favour of large effect sizes; (iii) to identify

temporal trends in HFC studies; (iv) to assess whether

mean effect sizes depend upon the genetic metric used; (v)

to test whether fitness, morphological and physiological

traits differ in the strength ofeffect sizes reported; (vi) to test

whether population demographic history has a detectable

impact on the strength of HFCs; and (vii) to suggest which

avenues of future HFC research might be most fruitful.
Methods

Data collection

In May 2008, we used keyword searches in Web of Know-

ledge (http://apps.isiknowledge.com) using a combination

of the following search terms: heterozygosity, heterosis,

inbreeding, genetic diversity, marker, MLH, SH, IR, d2, HFC

and fitness. These methods were successful in retrieving

all studies included in Coltman & Slate (2003; hereafter

C&S), and we were therefore confident that our keyword

searches were appropriate. A cited reference search was

also conducted of all papers citing C&S, or Reed &

Frankham (2001). In addition, we solicited unpublished

results by emailing rquests to two widely subscribed

mailing lists: EvolDir (http://evol.mcmaster.ca/evoldir.html,

6784 subscribers) and the Animal Gene Mappers Discus-

sion Group (www.animalgenome.org/community, 1559

subscribers). Very few unpublished results were received

via this route, and of these only two satisfied the criteria

for inclusion listed below. Some of the studies listed as

unpublished in C&S have now been published, while

others remain unpublished. We did not include studies of

plants or fungi in the scope of this review (see Leimu et al.

2006 for a recent appraisal of HFCs in plants).

To be included in the meta-analysis, studies (both pub-

lished and unpublished) had to satisfy the following criteria:

(i) having been conducted on a single population of ani-

mals from a distinct geographical area (this included wild,

domestic and captive populations); (ii) genetic variation had

been quantified using microsatellites and expressed as

multilocus, rather than single locus, heterozygosity; (iii) at
� 2009 Blackwell Publishing Ltd
least one of the following genetic metrics had been used

to quantify individual variation: MLH, SH, IR, mean d2,

or St d2 (standardized d2 see Appendix S1 Supporting

information for further details); (iv) relationships had

been quantified using a statistical measure that could

be converted to an estimate of effect size — namely r, t,

F, v2, or the exact P value; (v) HFCs were quantified

between individuals within the population, rather than

groups (such as family groups, e.g. Seddon et al. 2004);

(vi) it was possible to determine the direction of the

effect (see Appendix S1, Supporting information).

The two types of univariate meta-analysis described

below where chosen to facilitate comparisons with earlier

meta-analyses of HFCs (e.g. Britten 1996; Reed & Frankham

2001; C&S). We then describe a more comprehensive

multivariate analysis that allows the modelling of multiple

predictor variables simultaneously, allowing us to compare

and contrast the results of these meta-analytical approaches.
Univariate meta-analyses

We considered three categories of trait type, following

other authors in this general field (e.g. Mousseau & Roff

1987; C&S): morphological (M) traits, such as size and

shape; life-history (LH) traits, such as survival and breed-

ing success; and physiological (P) traits, such as parasite

load or infection intensity. We also categorized traits as

fitness and nonfitness traits (see Appendix S1, Supporting

information). We converted the results of each reported

HFC statistical analysis to r, the equivalent of the Pearson

product moment correlation coefficient, a common mea-

sure of effect size. This measure of effect size was chosen to

be consistent with the C&S meta-analysis, and because it is

possible to convert most commonly reported statistical

metrics to r (Rosenthal 1991). We estimated r for each statis-

tical analysis reported based on MLH, SH, IR, d2 or St d2

separately, using the statistical calculator provided in the

MetaWin software package version 2.0 (Rosenberg et al.

2000). Details of how each statistical metric was converted

to r can be found in Rosenthal (1991, 1994) and C&S. We

used Fisher’s transformation, Zr, for statistical calcula-

tions, and then back-transformed to r for presentation. The

homogeneity of weighted mean effect sizes was testing

with the QT-statistic (Hedges & Olkin 1985; Rosenthal 1991;

Shadish & Haddock 1994).

It is important to account for psuedoreplication of results

in meta-analyses. We used three approaches to do this:

first, we treated all effects as independent data in a univari-

ate analysis (i.e. psuedoreplication was ignored); second,

we repeated the univariate study unit average analysis of

C&S; and third, we used a linear mixed-effects model with

random factors to account for levels of psuedoreplication.

Further details of these methods can be found below, and

in Appendix S1, Supporting information.
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Assessing the impact of sample size and evidence for
publication bias

The relationship between sample size and effect size was

investigated with funnel plots. We assessed temporal

trends by regressing the number of individuals, markers

and genotypes assayed against time. We used a log10 scale

for number of individuals, markers and genotypes, as one

paper (Slate et al. 2004) had sample sizes for these variables

approximately an order of magnitude larger than most

other studies. Tests for publication bias were conducted

by comparing the mean effect sizes of published and

unpublished studies, inspection of funnel plots, and via the

trim and fill technique (Duvall & Tweedie 2000), which

estimates the number of studies missing due to publication

bias against nonsignificant results of small sample size, the

mean effect size of such studies, and the influence this has

on the overall mean effect size estimated by the meta-

analysis. To determine whether publication bias has

reduced since the C&S meta-analysis suggested this as a

potential problem in this field, we conducted a second trim

and fill analysis of papers published after May 2004, 1 year

after the publication of C&S, to allow for dissemination of

the findings of C&S and to remove any bias due to papers

in press.
Multivariate meta-analysis

For the mixed-effects meta-analysis, transformed effect

sizes were weighted by the variance, calculated by the

reciprocal of the sum of their conditional variance:

Var ¼ 1

n� 3
;

where n is the number of individuals included in the
study (Raudenbush 1994; Nakagawa et al. 2007). Ninety

five per cent confidence intervals were calculated for

each mean effect size as,

�Zr �
1:96
ffiffiffiffi

N
p
� 3k0

where N is the sum of all effect size sample sizes and k is the
number of effect sizes included (Hedges & Olkin 1985).

Testing for homogeneity of effect sizes using the QT statistic

may not accurately reflect data heterogeneity in linear

mixed effects model (LMM, Nakagawa et al. 2007), so for

the multivariate meta-analysis we also calculated QREML,

the residual heterogeneity in random-effects models which

takes into account random variation in effect sizes between

studies (Nakagawa et al. 2007). More specific details of the

mixed-effects meta-analysis can be found as Supporting

information, Appendix S1.

For all three of the meta-analytical approaches listed

above, we calculated weighted mean effect size for each
combination of genetic metric and trait type separately, to

ensure that statistically conservative effect sizes were

estimated for biologically meaningful groupings of data.

We assumed a negligible effect of outbreeding depression,

given that this has rarely been shown in wild animal

populations (Frankham 1995a; Pusey & Wolf 1996), and

has been shown to be of only one-tenth the magnitude of

inbreeding depression in a captive population of Goeldi’s

marmosets (Lacy et al. 1993; Frankham 1995a).
Assessing the importance of demographic history and
inbreeding

Demographic history might have a large, and often

undetected, impact on the strength of HFCs in populations.

We thus attempted to account for this variation by scoring

populations on three demographic parameters for which

information was available for most populations. To test for

the influence of population demography, we scored each

population based on three demographic criteria, with each

study assessed for whether or not the population did or did

not fit into that category. The three criteria we used to score

populations were as follows: (i) whether the population

had passed through a genetic bottleneck or founding event

within the previous 20 generations. Such events cause an

increase in inbreeding variance due to small instantaneous

population size, but this effect weakens over time as the

equilibrium associative overdominance for small popu-

lations is recovered (Weir et al. 1980; Bierne et al. 2000).

Twenty generations was chosen as it has been shown in

Drosophila that 20 generations after an inbreeding event is

sufficient to significantly reduce the amount of inbreeding

depression, which is likely mediated via purging of

recessive deleterious alleles of strong effect (Fowler &

Whitlock 1999). (ii) Whether the effective population size

was between 50 and 500. These values were chosen based

on Franklin’s 50/500 rule (Franklin 1980) which suggests

that an effective population size (Ne) of less than 50 is

unlikely to maintain typical levels of heritable variation

even in the short term, while populations with effective

sizes larger than 500 are likely to maintain sufficient

heritable variation in the long term. Thus, we grouped

together populations with effective sizes lower than 50 and

greater than 500 as being those populations likely to have

low variance in inbreeding, and populations with effective

sizes of 51–499 as being those populations most likely to

show elevated levels of inbreeding variance. When an

accurate estimate of effective population size was not

available, but an estimate of total population size was, we

divided Ne by 0.11, following a review by Frankham

(1995b) showing that in wild populations, the average ratio

of N/Ne is 0.11. (iii) Whether the population had a highly

skewed mating system, a high degree of natal philopatry

and/or was a small enclosed system with very little
� 2009 Blackwell Publishing Ltd
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immigration. These factors are all likely to increase

inbreeding variance by reducing the pool of available

mates. For each category, the population was scored as a

one if the answer was ‘yes’, and a zero if the answer was

‘no’ or ‘unknown’. Thus, we produced a four-point ordinal

scale ranging from 0, being those populations likely to

exhibit lowest variance in inbreeding, to 3, being those

populations likely to exhibit the highest variance in

inbreeding. This was a conservative analysis, as populations

for which this information was unknown were scored as a

0 in that category. We excluded all captive and domestic

populations from these analyses, as demographic processes

are likely to be quite different in nonwild settings. More

sophisticated analyses, such as using estimates of genetic

load, were not possible due to the fragmentary nature of

this information for most populations.
Assessing the impact of genetic purging

It is possible that a history of inbreeding will have created

increased opportunities for populations to have purged

their genetic load. Furthermore, linkage disequilibrium is

elevated after founding and bottlenecking events and

decays over time. We therefore compared populations

known to have undergone historic bottlenecking or

founding events (defined as occurring more than 20

generations ago), with those populations suffering recent

declines, bottlenecks or founding events (occurring within

the last 20 generations). Because genetic purging and

decay of linkage disequilibrium are slow processes, we

predicted that mean effect sizes should be smaller in

historically bottlenecked populations than recently

bottlenecked populations.
Model averaging

We used a model averaging approach based on Akaike’s

information criteria (AIC), corrected for small sample size

(AICc, Burnham & Anderson 2002) using the dRedging

library implemented in R (version 2.7.1) to determine

which factors had important influences on the overall

mean effect size, following the methods described in

Knowles et al. (2009). Model selection from the entire pool

of MLHinc effect sizes was conducted using maximum

likelihood with the following four fixed factors: trait type

(LH/M/P), sex, publication status of the study and ecolog-

ical setting of the population (wild/domestic/captive),

with all possible interactions, resulting in 16 candidate

models. We also repeated the model averaging method for

the reduced pool of effect sizes from wild populations, in

order to determine the relative importance of demographic

history. Model selection here was conducted with the param-

eters listed above with the exception of ecological setting,

which was replaced by the demographic variable, thus we
� 2009 Blackwell Publishing Ltd
again had 16 candidate models for this analysis. In all mod-

els, the random factors of exact trait measured nested

within study population were included. We used the

AIC weights for each model as an indication of how

well that model was supported, and model averaging

to determine the relative importance of each fixed factor

in the model, Rxi, which is determined by the sum of

Akaike weights from all models in which that factor was

included (Burnham & Anderson 2002).
Results

Data collection

We collected 628 reported effect sizes, which comprised

223 effect sizes included in the C&S meta-analysis, and 405

effect sizes published since C&S (Table S1, Supporting

information); hence, the amount of work in this area has

almost tripled in the 5 years since 2003. A total of 211 effect

sizes were reported using MLH, 144 using SH, 76 using IR,

183 using mean d2, and 14 using St d2 (Table 1, Fig. S1,

Supporting information). The most commonly studied

class was mammals (n ¼ 347 effect sizes from 29 species),

followed by birds (n ¼ 230 effect sizes from 23 species), fish

(n ¼ 34 effect sizes from six species), invertebrates (n ¼
11 effect sizes from two species), and reptiles (n ¼ six effect

sizes from one species), hence a total of 61 different species

were represented. Most effect sizes came from published

studies (n ¼ 481 effect sizes from 58 papers) with the

remainder coming from unpublished work such as MSc

and PhD theses and results in preparation for publication

(n ¼ 147 effect sizes from nine studies; Table S1). Most

studies had been conducted on wild populations (89.8% of

study units and 74.5% of effect sizes) with the rest coming

from studies of domestic (7.1% of study units and 18.3% of

effect sizes), or captive (3.1% of study units and 7.2% of

effect sizes) populations. Most studies considered the

effects of genetic metrics on morphometric traits (n ¼ 323,

51.4%), followed by life-history traits (n ¼ 240, 38.2%)

and physiological traits (N ¼ 65, 10.4%); this pattern was

consistent with that found by C&S. Hence, while there has

been a huge increase in work in this area in recent years, it

is broadly similar in focus.
Univariate meta-analyses

When all reported effect sizes were treated as independent

data points, the overall weighted mean effect sizes for the

different genetic metrics were low, but significantly greater

than zero for all metrics except St d2, for which the sample

size was smallest. The mean effect size for all studies

pooled was r ¼ 0.036. Weighted mean effect sizes were

largest for MLH and IR (both r ¼ 0.048), followed by SH

(r ¼ 0.040, Table 1). The two measures of mean d2 had the



Table 1 Effect sizes (r) and their confidence

intervals, number of reported effect sizes

(k), QT-statistics (for homogeneity of effect

sizes) for all reported effect sizes for the

association between genetic diversity

measured as MLH, SH, IR, mean d2, or St d2

and phenotypic variation using univariate

meta-analysis techniques, and treating all

reported effect sizes as independent data

points; 95% confidence intervals that do not

span zero are in bold

Observations Mean r 95% CI k QT PQ

All inclusive meta 0.0363 0.0302–0.0425 628 1188.3285 < 0.0001

MLH

All traits 0.0476 0.0355–0.0595 211 333.0781 < 0.0001

Life history 0.0671 0.0462–0.0880 55 95.7653 0.0004

Morphometric 0.0324 0.0166–0.0482 124 154.2260 0.0297

Physiological 0.0784 0.0319–0.1246 32 74.1069 < 0.0001

Published effects 0.0506 0.0377–0.0634 194 319.3055 < 0.0001

Unpublished effects 0.0273 –0.0087–0.0632 17 12.1395 0.7343

SH

All traits 0.0404 0.0280–0.0527 144 319.6163 < 0.0001

Life history 0.0898 0.0702–0.1094 73 164.3430 < 0.0001

Morphometric 0.0085 0.0087–0.0258 59 80.0062 0.0294

Physiological –0.0016 –0.0523–0.0491 12 33.30119 0.0005

Published effects 0.0578 0.0436–0.0720 107 244.1002 < 0.0001

Unpublished effects –0.0137 –0.0393–0.0120 37 51.3193 0.0470

IR

All traits 0.0477 0.0303–0.0651 76 183.3384 < 0.0001

Life history 0.0687 0.0448–0.0925 38 123.1475 < 0.0001

Morphometric 0.0133 –0.0145–0.0410 29 33.4587 0.2193

Physiological 0.1172 0.0173–0.2146 9 14.5153 0.0693

Published effects 0.0781 0.0578–0.0985 52 131.8897 < 0.0001

Unpublished effects –0.0382 –0.0734–0.0030 24 16.9242 0.8130

Mean d2

All traits 0.0235 0.0127–0.0344 183 327.4431 < 0.0001

Life history 0.0633 0.0421–0.0845 61 142.3076 < 0.0001

Morphometric 0.0076 –0.0059–0.0210 110 148.7218 0.0069

Physiological 0.0215 –0.0232–0.0662 12 16.7902 0.1142

Published effects 0.0384 0.0232–0.0535 114 228.7453 < 0.0001

Unpublished effects 0.0077 –0.0081–0.0234 69 90.8873 0.0334

St d2

All traits 0.0137 –0.0217–0.0492 14 8.8805 0.7819

Fig. 1 Mean effect sizes of the different genetic metrics, including

95% confidence intervals.
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lowest effect sizes (mean d2 r ¼ 0.024; St d2 r ¼ 0.014).

Weighted mean effect sizes for life-history traits were

consistently higher than for morphological traits (Table 1).

Nearly all effect sizes were heterogeneous when grouped

by trait type and/or genetic metric, the exceptions being

physiological traits measured by IR or mean d2, and

morphological traits measured by IR; this suggests that

subclasses of effect sizes occur within most of these

groupings (Matt & Cook 1994).

The four genetic metrics MLH, IR, SH and mean d2 all

exhibited mean effect sizes significantly different from

zero, but not significantly different from each other (Fig. 1).

We also determined the weighted mean correlation coeffi-

cients for pairwise combinations of the genetic metrics

from published studies (Table 2). This analysis revealed

strong, significant, correlations between the metrics MLH,

SH, and IR and somewhat weaker significant correlations

between these metrics and mean d2. The metric St d2 was

not significantly correlated with the other four metrics.

These analyses show that most of the genetic metrics in

common use do not measure different aspects of individual
� 2009 Blackwell Publishing Ltd



Table 2 Mean correlation coefficients (r) between the five genetic

metrics reported in published studies, weighted by study variance

(upper diagonal) and the number of papers reporting this

correlation (lower diagonal). Significant correlations (those for

which the 95% CIs do not span zero) are in bold. Note that the

comparison of MLH and IR was based on only one published

correlation, significance in this case was determined directly from

the published P value of the correlation

Genetic metric MLH SH IR Mean d2 St d2

MLH — 0.971 0.94 0.395 0.315

SH 4 — –0.967 0.235 0.347

IR 1 3 — NA 0.056

mean d2 11 3 NA — 0.069

St d2 2 5 3 2 —

NA, no published comparison available.
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genetic variation; therefore, they can probably be used

interchangeably, but should not be used concurrently. As a

consequence, and to simplify further models, we pooled

results from the three most highly correlated metrics,

namely MLH, SH, and IR, for all further analyses. For

simplicity, these three pooled metrics will be referred to as

MLHinc henceforth.

We repeated the ‘all effects independent’ univariate

analysis using the MLHinc grouping, and compared this to

a second, more conservative univariate analysis whereby

we took ‘study unit averages’ for each genetic metric (MLHinc

and mean d2) and trait type (LH, M and P) combination, as

in C&S. The univariate analysis treating all effect sizes as

independent but combining the results for MLH, SH and
Table 3 Univariate meta-analyses of effect sizes (r) and their confidence

homogeneity of effect sizes) using (a) the pooled MLHinc metric and treati

metric and study unit mean effect sizes; and (c) mean d2 and study unit

not span zero are in bold

Observations Mean r 95% CI

(a) MLHinc, all reported effect sizes

All traits 0.0448 0.0371–0.0525

Life history 0.0763 0.0642–0.0884

Morphometric 0.0201 0.0095–0.0307

Physiological 0.0484 0.0179–0.0796

(b) MLHinc, study unit averages

All traits 0.0737 0.0566–0.0907

Life history 0.0926 0.0691–0.1161

Morphometric 0.0531 0.0233–0.0830

Physiological 0.0468 –0.0076–0.1009

(c) Mean d2, study unit averages

All traits 0.0424 0.0161–0.0687

Life history 0.0774 0.0379–0.1168

Morphometric 0.0117 –0.0326–0.0559

Physiological 0.0113 –0.0931–0.1155
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IR into one inclusive metric (MLHinc) found broadly similar

results (Table 3a) as were found when these metrics were

tested individually (Table 1). However, M traits in the

study unit average univariate analysis showed a more than

twofold increase in weighted mean effect size (‘all effects

independent’ r ¼ 0.02, vs ‘study unit average’ r ¼ 0.05;

Table 3b). We also found increased weighted mean effect

sizes for LH and M traits measured with mean d2 when

using the study unit average approach (Table 3c) com-

pared to when treating all effect sizes as independent data

(Table 1). The study unit average approach reduced the

amount of heterogeneity in the data, although most data

groupings were still significantly heterogeneous (Table 3).
Evidence for publication bias

Other than for St d2 (all effect sizes were published), mean

effect sizes for all genetic metrics were at least twofold

greater in published studies, with the greatest disparity

being a fivefold difference in the magnitude of effects

between published and unpublished studies using the

metric mean d2 (Table 1). The 95% confidence intervals for

weighted mean effect sizes from published studies did not

span zero for any genetic metric, while the opposite was

true for unpublished studies: all 95%CIs spanned zero. For

MLH, published and unpublished effect sizes did not differ

significantly (t ¼ 0.10, P ¼ 0.31, n ¼ 211), whereas the differ-

ence was significant for mean d2 (t ¼ 2.1, P ¼ 0.038, n ¼
183). Unpublished weighted mean effect sizes were

statistically homogeneous for MLH and IR but not the

other two metrics, while published effect sizes for all four

genetic metrics were statistically heterogeneous (Table 1).
intervals, number of reported effect sizes (k), and QT-statistics (for

ng all effect sizes as independent data points; (b) the pooled MLHinc

mean effect sizes. Ninety-five per cent confidence intervals that do

k QT PQ

431 836.8545 < 0.0001

166 386.3551 < 0.0001

212 272.1239 0.0029

53 130.6207 < 0.0001

105 135.0730 0.0219

45 65.4610 0.0195

49 42.1068 0.7120

11 21.7535 0.0164

57 87.1411 0.0049

26 50.6721 0.0018

27 25.9100 0.4681

4 4.3017 0.2307



Fig. 2 Variation in effect sizes as a function

of sample size (a: MLH; b: mean d2).

Published studies are represented by closed

symbols, while unpublished studies are

represented by open symbols.
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Visual inspection of funnel plots (Fig. 2) also shows that

unpublished studies (represented by open symbols) tend

to have smaller effect sizes than published studies (closed

symbols). We conducted a trim and fill analysis on the 481

published HFC effect sizes to test for publication bias. The

mean r of these published effects was 0.0515. The trim and

fill analysis suggested there were 48 effect sizes missing

from our meta-analysis. Adding these ‘missing’ studies

reduced the mean effect size to r ¼ 0.0431, with 95%

confidence intervals of 0.0359–0.0503. We then repeated

this trim and fill analysis including only those papers

published since C&S. This analysis comprised 278 effect

sizes from 35 papers, and the mean effect size among these

papers was r ¼ 0.065. The trim and fill analysis identified a

potential 11 missing studies, and when these ‘missing’ 11

studies were added, the mean effect size was r ¼ 0.0612

(95%CIs 0.0495–0.0730).
Influence of sample size

Visual inspection of funnel plots (Fig. 2) confirms the

expectation that small sample sizes can produce large

fluctuations around the predicted true mean effect sizes;

the ranges of sample size (7–1055), markers typed (3–101)

and total genotypes assayed (40–57873) were all very large.

We found no evidence that these parameters have

increased over time (number of individuals F1,57 ¼ 3.04,

P ¼ 0.09,Fig. 3a;numberofmarkersF1,57 ¼ 0.92,P ¼ 0.34,

Fig. 3b;numberofgenotypesF1,57 ¼ 0.68,P ¼ 0.41;Fig. 3c).
Multivariate meta-analyses

We next ran the meta-analyses in an LMM framework with

the random effects of study population, and, where

appropriate, the exact trait measured, to help control for
� 2009 Blackwell Publishing Ltd



Fig. 3 The relationship between number of individuals assayed (a), markers typed (b), and total genotypes assayed (c) and year of

publication for all published HFC studies included in these analyses.

Table 4 Linear mixed effects model of effect sizes (r) and their standard errors and 95% confidence intervals, number of reported effect sizes

(k), t-tests and their associated P values, and QT and QREML statistics (for homogeneity of effect sizes) and their associated P values, for all

reported effect sizes for the association between genetic diversity measured as MLH, SH, IR, mean d2, or St d2; 95% confidence intervals that

do not span zero are in bold

Genetic metric Mean r Standard error 95% CI t-value P k QT PQ QREML PQREML

All metrics pooled 0.0826 0.0110 0.0610–0.1038 7.53 < 0.0001 628 1185.2 < 0.0001 822.95 < 0.0001

MLH 0.0845 0.0152 0.0549–0.1140 5.57 < 0.0001 211 333.08 < 0.0001 209.55 0.4763

SH 0.0791 0.0173 0.0452–0.1127 4.57 < 0.0001 144 319.62 < 0.0001 228.12 < 0.0001

IR 0.0934 0.0253 0.0440–0.1423 3.70 < 0.0001 76 183.34 < 0.0001 110.48 0.0038

mean d2 0.0653 0.0219 0.0225–0.1078 2.99 0.0033 183 327.44 < 0.0001 185.34 0.3969

St d2 0.0137 0.0136 –0.0128–0.0403 1.01 0.3403 14 8.8805 0.7131 8.8805 0.7131
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nonindependence of data points and taxonomy. Including

further random factors was not supported by the data (see

Appendix S2, Supporting information).

In the null model, the mean effect size across all studies,

trait types and genetic metrics was r ¼ 0.08. The 95%CIs for

r (0.061–0.104) did not span zero, thus the weighted mean

effect size for all studies combined was significantly differ-

ent from zero (t530 ¼ 7.53, P £ 0.0001). The effect sizes were

significantly heterogeneous (QT ¼ 1185.2, P £ 0.0001;

QREML ¼ 822.95,P £ 0.0001,both d.f. ¼ 626).

For comparison with the initial univariate analysis

(Table 1), we assessed weighted mean effect sizes for the

five genetic metrics individually (the three trait types were

pooled for this analysis), and found the same broad pattern

as in the univariate analysis, although weighted mean

effect sizes were two- to threefold larger in the multivariate

analysis (Table 4). We then repeated the multivariate ana-

lysis using the more inclusive MLHinc grouping of metrics.

Here, we found that life-history traits exhibited the strong-

est mean effect sizes (r ¼ 0.10, Table 5), and that this

result was similar to that found by both types of univariate
� 2009 Blackwell Publishing Ltd
analysis (all effect sizes independent r ¼ 0.08, study unit

average r ¼ 0.09). In contrast, we found that the weighted

mean effect size of physiological traits was larger here

(r ¼ 0.08, Table 5) than either univariate analysis (all effect

sizes independent r ¼ 0.05, study unit average r ¼ 0.05),

and that the weighted mean effect size of morphological

traits (r ¼ 0.06, Table 5) agreed more closely with that found

by the study unit average method (r ¼ 0.05) than with the

nonconservative independent effect size analysis (r ¼ 0.02).

Indeed, for all three traits, the study unit average and mul-

tivariate estimates of weighted mean effect size had largely

overlapping confidence intervals (Fig. 4). A similar pattern

was found for the metric mean d2: life-history traits exhib-

ited the largest weighted mean effect size, physiological

traits were much larger in the multivariate analysis than

either univariate method, and morphological traits were in

slightly closer agreement with the study unit average ana-

lysis than the independent effect sizes analysis (Table 5).

Data groupings in the multivariate analysis were again

mostly significantly heterogeneous when measured with

QT,however, the QREML approach showed much lower levels



Table 5 Linear mixed effects model of effect sizes (r) and their standard errors and 95% confidence intervals, number of reported effect

sizes (k), t-tests and their associated P values, and QT and QREML statistics (for homogeneity of effect sizes) and their associated P values, for

all reported effect sizes for the association between genetic diversity (MLHinc, mean d2 and St d2) and trait type (LH vs M vs P), ecological set-

ting of population (wild vs captive vs domestic) and publication status of study; 95% confidence intervals that do not span zero are in bold

Factors Mean r Standard error 95% CI t-value P k QT PQ QREML PQREML

MLHinc

Life-history traits 0.0984 0.0159 0.0674–0.1293 6.19 < 0.0001 166 386.36 < 0.0001 138.48 0.9268

Morphometric traits 0.0611 0.0158 0.0302–0.0919 3.87 < 0.0001 212 272.12 0.0025 168.07 0.9849

Physiological traits 0.0809 0.0389 0.0048–0.1560 2.08 0.0459 53 130.62 < 0.0001 96.04 0.0001

Population wild 0.0921 0.0135 0.0657–0.1184 6.82 < 0.0001 317 549.02 < 0.0001 86.38 1.0000

Population captive 0.1351 0.0686 0.0014–0.2640 1.98 0.0598 45 154.79 < 0.0001 146.50 < 0.0001

Population domestic 0.0593 0.0287 0.0032–0.1150 2.07 0.0426 69 96.56 0.0105 65.84 0.5172

Published effects 0.0957 0.0119 0.0725–0.1187 8.06 < 0.0001 353 700.56 < 0.0001 390.21 0.0731

Unpublished effects 0.0173 0.0235 –0.0287–0.0632 0.74 0.4656 78 88.03 0.1631 1.98 1.0000

Mean d2

Life-history traits 0.0931 0.0302 0.0341–0.1514 3.09 0.0039 61 142.31 < 0.0001 80.02 0.0357

Morphometric traits 0.0229 0.0198 –0.0159–0.0616 1.16 0.2501 110 148.72 0.0057 112.56 0.3628

Physiological traits 0.0946 0.0727 –0.0475–0.2330 1.31 0.2280 12 16.79 0.0791 4.99 0.8915

Population wild 0.0702 0.0251 0.0211–0.1189 2.80 0.0063 137 233.13 < 0.0001 135.20 0.4789

Population domestic 0.0293 0.0378 –0.0448–0.1030 0.77 0.4431 46 64.31 0.0245 47.03 0.3497

Published effects 0.0893 0.0282 0.0343–0.1438 3.18 0.0022 114 228.75 < 0.0001 125.77 0.1765

Unpublished effects 0.0201 0.0194 –0.0179–0.0580 1.03 0.3054 69 90.89 0.0277 57.77 0.7820

St d2

Life-history traits 0.0081 0.0164 –0.0240–0.0402 0.50 0.6336 13 8.58 0.6604 8.58 0.6604

Fig. 4 Weighted mean effect sizes of life history (LH),

morphometric (M) and physiological (P) traits detected using the

three meta-analysis methods: all effect sizes independent

univariate (red lines), study unit average univariate (blue lines)

and multivariate (black lines).
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of data heterogeneity in this analysis (Table 5). We tested

whether the general pattern of LH and M traits being of a

similar order of magnitude was also found in the subset of

studies that had measured both LH and M traits, using any
of the MLHinc metrics, in the same population, over the

same time-span and with the same set of markers (i.e, LH

and M HFCs were both reported in the same paper). We

identified 11 such studies, and again found no difference

in the weighted mean effect size reported for M and LH

traits (paired t-test ¼ 0.23, P ¼ 0.82, Fig. S2, Supporting

information).

For the remainder of the multivariate results, we focus

on effect sizes obtained with the MLHinc genetic metrics, for

three reasons: (i) ease of presentation and comparison of

results; (ii) the genetic metric mean d2 is now widely

regarded as relatively uninformative; and (iii) we had the

largest set of reported effect sizes for MLHinc.
Impact of demographic history and inbreeding

We classified the subset of wild populations on a

continuous ordinal scale ranging from zero to three for a

range of demographic factors. We tested whether popu-

ations scoring higher on this scale, and thus being more

likely to exhibit higher inbreeding variance among

individuals, had higher mean effect sizes, but found no

evidence this was the case (regression coefficient ¼ –0.005,

SE ¼ 0.01, t76 ¼ –0.40,P ¼ 0.69,n ¼ 317,Fig. 5).Wethen

grouped together all populations scoring between 1 and 3

on this ordinal scale (in other words, all populations scored

as likely to have a nonzero rate of inbreeding variance),

and compared this group with the group of populations

scoring zero (and thus likely having very little inbreeding
� 2009 Blackwell Publishing Ltd



Fig. 5 Relationship between effect size (Zr) and demographic

history scored on an ordinal scale from 0 (populations estimated

to have the lowest variance in inbreeding) to 3 (populations

estimated to have the highest variance in inbreeding) for studies

reporting effect sizes using any of the MLHinc metrics. Boxes are

bounded by the 25th and 75th percentiles, with the median value

shown inside the box. Whiskers below and above the boxes

indicate the 10th and 90th percentiles, with outliers plotted as dots.

Table 6 Model selection of variables influencing the magnitude

of overall mean effect size. Candidate models are shown with their

relative AICc weight, difference between the candidate model and

the best model (Di), and Akaike weight (xi). The best model is listed

first, and all other models in descending order of support

Model rank Variables in model AICc Di xi

1 1 (null model) –495.57 0.000 0.192

2 1 + 3 –495.44 0.134 0.179

3 1 + 3 + 5 –494.32 1.259 0.102

4 1 + 5 –494.17 1.408 0.095

5 1 + 4 –493.55 2.025 0.070

6 1 + 3 + 4 –493.42 2.156 0.065

7 1 + 2 –493.21 2.367 0.059

8 1 + 2 + 3 –493.10 2.471 0.056

9 1 + 3 + 4 + 5 –492.24 3.334 0.036

10 1 + 4 + 5 –492.10 3.475 0.034

11 1 + 2 + 5 –491.60 3.972 0.026

12 1 + 2 + 3 + 5 –491.58 3.993 0.026

13 1 + 2 + 4 –491.20 4.371 0.022

14 1 + 2 + 3 + 4 –491.12 4.458 0.021

15 1 + 2 + 4 + 5 –489.53 6.049 0.009

16 1 + 2 + 3 + 4 + 5 –489.50 6.072 0.009

Variables: 1, intercept; 2, ecological seeing of population; 3,

publication status of study; 4, sex; 5, trait type (LH/M/P).
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variance), but again found no evidence for higher mean

effect sizes in populations likely to have a nonzero level of

inbreedingvariance(regressioncoefficient ¼ –0.008,SE ¼ 0.03,

t76 ¼ –0.29, P ¼ 0.77, n ¼ 317); we also found no evidence

that effect size depended on the type of fitness trait in these

populations (results not shown). It is possible this lack of

an increase in effect size in populations predicted to have

high variance in inbreeding is due to more complete

purging of deleterious recessive alleles in such populations.

We identified 48 effect sizes from17 populations (13species)

in which there is evidence of historic bottlenecking or

founding events, and 26 effect sizes from 8 populations (6

species) in which founding or bottlenecking has occurred

recently. We found slightly higher mean effect sizes in

recentlybottleneckedpopulations(r ¼ 0.12) thanhistorically

bottlenecked populations (r ¼ 0.08), however, the difference

was not significant (t23 ¼ 0.65, P ¼ 0.51, n ¼ 74).

We tested whether our failure to detect a relationship

between demographic history and mean effect size was

due to small sample sizes (and thus higher sampling vari-

ance) from small populations, but found no relationship

between the sample size used in a study and log10 of the

estimated annual population size, where this information

was available (regression coefficient ¼ –14.9, P ¼ 0.56, n ¼ 57,

Fig. S3a, Supporting information), or between population

average heterozygosity and population size (regression

coefficient ¼ 0.03, P ¼ 0.19, n ¼ 42, Fig. S3c). Furthermore,
� 2009 Blackwell Publishing Ltd
we found no evidence that sample sizes were smaller from

populations with higher demographic scores; sample sizes

were in fact higher, although the trend was not significant

(regression coefficient ¼ 28.0, P ¼ 0.16, n ¼ 76, Fig. S3b).

However we did find that populations with higher demo-

graphic scores had significantly lower heterozygosity

(regression coefficient ¼ –0.04, P ¼ 0.0008, n ¼ 58, Fig. S3d),

suggesting that our attempt to classify populations on the

basis of variance in inbreeding was, at least to some extent,

effective, as lower population heterozygosity would be

expected in more inbred populations (see also Evans &

Sheldon 2008).
Model averaging

We used just the effect sizes reported using any of the

MLHinc metrics (n ¼ 431), and tested the relative importance

of the following variables: trait type (LH, M or P),

ecological setting of the population (wild, domestic or

captive), whether or not the study had been published, and

the sex of the individuals for which the HFC was reported.

The best-supported model was the null model; in other

words, no combination of the variables listed above

produced a better-supported model than the model in

which none were included (Table 6). The relative variable

importance, R xi, was reasonably low for all four fixed fac-

tors (trait type R xi ¼ 0.338; ecological setting R xi ¼ 0.227;

publication status R xi ¼ 0.494; sex R xi ¼ 0.265). Repeating
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the model averaging exercise with all 629 effect sizes we

gathered, and including the genetic metric used as a fixed

factor, assigned a high relative importance to this variable

(R xI � 0.9, data not shown), reflecting the large difference

in effect sizes found with the metric St d2 and all other metrics.

We repeated the model averaging analysis in the subset of

wild populations (n ¼ 317) in order to determine the relative

importance of population demographic history among

these studies, with broadly similar results (see Appendix S2

and Table S2, Supporting information).
Discussion

Comparison of univariate and multivariate methods for
meta-analysis

Multivariate methods of meta-analysis in a mixed-effects

model framework represent an improvement in our ability

to draw valid conclusions when pooling the results of

multiple studies in ecology and evolution, and indeed in

all fields of quantitative science, as they help to account

for a major problem with meta-analysis, that of noninde-

pendence of data points. Nevertheless, we chose to

conduct two types of univariate meta-analysis in addition

to a more comprehensive multivariate meta-analysis, both

to facilitate comparisons with earlier meta-analyses of such

studies (Britten 1996; Reed & Frankham 2001; Coltman &

Slate 2003) and to allow direct comparison between the

methods.

The ‘all effects independent’ univariate analysis revealed

weak but significantly positive mean effect sizes for the all

of the genetic metrics with the exception of St d2; stronger

effect sizes were found for life history than morphological

and physiological traits. These results differ in some ways

from findings of previous univariate meta-analyses: Britten

(1996) found an overall effect size of r ¼ 0.133 for HFCs,

while Reed & Frankham (2001) found an overall effect size

of r ¼ 0.217, with LH traits exhibiting a weaker and nega-

tive mean effect (r ¼ –0.110) when compared with M traits

(r ¼ 0.311). More recently, Coltman & Slate (2003) found

that the overall effect size for life-history traits was

r ¼ 0.086 and r ¼ 0.048 when MLH and mean d2, respec-

tively, were used as the genetic metric, while effect sizes

were lower for morphological and physiological traits

(r ¼ 0.004–0.008). Our ‘study unit average’ univariate ana-

lysis revealed an increase in the estimated weighted mean

effect size for both LH and M traits, but a smaller difference

in effect size between these two trait types (LH vs. M:

Dr ¼ 0.056 when all effects treated as independent data,

Dr ¼ 0.039 for study unit average analysis). This was again

in broad agreement with previous results: C&S found an

increase in mean effect size for both LH (r ¼ 0.112) and M

traits (r ¼ 0.052), but a decrease in the magnitude of dif-

ference between LH and M traits when using the study unit
average approach (Dr ¼ 0.080 for independent analysis,

Dr ¼ 0.060 for study unit average analysis). In plants, the

weighted mean correlation between heterozygosity and

fitness was also significantly positive (r ¼ 0.306), and was

significantly influenced by mating system, whereby self-

incompatible plants showed significant positive HFCs

whereas self-compatible plants did not, but not by plant

rarity or longevity (Leimu et al. 2006). It is interesting to

note the much stronger mean effect size found for plants

than for animals. This is perhaps due to the fundamental

differences in mating system and demography between

plants and animals. For example plant populations can

exhibit strong demographic population structure (such as

age structure) not often seen in animal populations. A lack

of published information meant that Leimu et al. (2006)

were not able to specifically address the impact of demog-

raphy on HFCs in plants. However, it should also be noted

that study sample sizes in Leimu et al. (2006) are very small

(n ¼ 2–14), and the authors recommend their conclusions

be considered preliminary. Methodological differences

between our study and that of Leimu et al. (2006) may also

help to account for the large difference in mean effect sizes

seen between plants and animals. For example, along with

heterozygosity, Leimu et al. (2006) also considered percent-

age of polymorphic loci and the number of alleles as meas-

ures of genetic diversity.

The multivariate meta-analysis we carried out here also

revealed weak but significantly positive mean effect sizes

for the genetic metrics MLH, SH, IR and mean d2 and a non-

significant mean effect size for St d2. This lack of signifi-

cance for St d2 may be due to a paucity of studies that have

reported this metric (14 effect sizes from 9 study popula-

tions); however, it seems likely that standardizing this

measure actually results in a loss of genetic signal, and

standardized d2 is increasingly considered to be less

informative than other measures (Hoffman et al. 2006).

Only one study included in the meta-analysis identified

outbreeding depression in their population (Marshall &

Spalton 2000), and, given that outbreeding depression is

thought to be rare in animal populations (Frankham 1995a;

Pusey & Wolf 1996), we felt justified in assuming that

overall, any signature of outbreeding depression in our

meta-analysis would be negligible. Nevertheless, it is

possible that some populations included here actually

had high rates of undetected outbreeding depression. Such

populations would be expected to exhibit strong negative

HFCs, and as such may have lowered our global estimates

of weighted mean effect size. Negative effects were less

common than positive effects among the studies in our

meta-analysis (34% of effects), and strong negative HFCs

were especially rare (3.8% of effects were Zr £ )0.25), but

were detected using both MLHinc and mean d2 metrics

(Fig. 2), in contrast to the analysis of C&S, where strong

negative effects were only detected with mean d2.
� 2009 Blackwell Publishing Ltd
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While the study unit average analyses suggested that

effect sizes are strongest for life-history traits, this pattern

was not mirrored in the multivariate meta-analysis; here

mean effect sizes were much more similar between the

three trait types. Thus, the large difference in mean effect

size for life history vs. morphological traits found in C&S

was only partially supported here, and was dependent

upon the genetic metric employed and the type of meta-

analysis conducted. The change in effect size dependent on

the method used suggests that the low value found for M

traits in the initial independent effects univariate analysis,

was due, at least in part, to psuedoreplication of effect

sizes. Sequentially dropping each of the higher order

nested random factors (class, family, and species) in the

multivariate analysis revealed increasingly large differ-

ences between life-history traits and morphological and

physiological traits (data not shown). This again suggests

that earlier meta-analyses have not adequately controlled

for pseudoreplication within and between studies, and that

the ‘study-unit average’ approach used here, and taken by

some authors, does not fully account for replicated results.

The model averaging analysis showed that the main fac-

tors that appear tobe influencingthe magnitude of reported

effect sizes in this meta-analysis are properties intrinsic to

the study design; namely (i) whether St d2 or any of the other

four genetic metrics wasused to determine genetic variabil-

ity; and (ii) whether the study had been published or not.

Intrinsic properties of the individuals and populations

studied, such as the type of trait measured (LH/M/P) and

the ecological setting of the population (wild/captive/

domestic) had much lower influence on mean effect sizes,

as models incorporating these factors were less well sup-

ported (Table 6) and these variables had lower relative

importance. In general, this suggests a rather poor fit between

the results of HFC analyses and expectation based on popu-

lation genetic theory. Below we discuss how these results

relatetotheobjectivesofthepaperlistedintheintroduction.
Evidence for publication bias

We found three lines of evidence for a bias towards

publishing significant effects. First, unpublished studies

had smaller effect sizes than published studies. Indeed, in

the univariate analysis, unpublished effect sizes for all

genetic metrics were not statistically different from zero.

Second, the funnel plots show clear evidence for missing

studies with small effects and low sample size. Third, the

trim and fill analysis suggested there were 48 missing

effects from the pool of 481 published effects used in the

analysis, suggesting that around 10%of all HFC effect sizes

recorded by researchers go unreported in the literature.

The analysis suggested that if these ‘missing’ effect sizes

had been published, weighted mean effect sizes would be

weaker, albeit still significantly positive. The trim and fill
� 2009 Blackwell Publishing Ltd
analysis of papers published since C&S suggested that

only around 4% of detected HFC effect sizes now go

unpublished, suggesting a reduction in bias since the

publication of C&S.

It has been suggested that meta-analyses are biased

towards finding positive effects, especially if care is not

takento identifyandinclude‘missing’nonsignificantresults

(Kotiaho & Tomkins 2002; Jennions et al. 2004; Tomkins &

Kotiaho 2004). However, our meta-analysis suggests that

publication bias in this field does not necessarily result in

spurious conclusions being reached with regard to the

existence of HFCs, as the trim and fill analysis suggested

that including ‘missing’ studies would still reveal weakly

significant positive effects. One reason for this may be that

HFC studies generally report many correlations, and often

many of these are nonsignificant; indeed, of the 481 effect

sizes we collected from published studies, only 115 (24%)

were significant at the P ¼ 0.05 level. This indicates that

there is no dearth of nonsignificant results in this field.

However, many of these nonsignificant results were pub-

lished in papers also reporting significant results. We have

no way of knowing how many studies that fail to detect

any significant results at all remain unpublished, although

the trim and fill analysis suggests that this may not be a

serious problem (although see Koricheva 2003). The publi-

cation bias seems to be strongest for negative results based

on small sample sizes (Fig. 2). We also found evidence to

suggest that publication bias in this field may have lessened

since the publication of C&S, where this problem was first

identified as a potential issue for microsatellite HFC studies.
Temporal trends in HFC studies

If it is reassuring to find a recent reduction in publication

bias in this field (suggesting heeding of advice in C&S),

other temporal trends inspire less confidence. Coltman &

Slate (2003) suggested that sample sizes were often too

small in this field, but there is little evidence that the

number of individuals sampled, markers assayed, or total

genotypes scored have been increasing since the publication

of C&S (Fig. 3). As can be seen by visual inspection of

funnel plots (Fig. 2), studies with small sample sizes exhibit

large fluctuations around the estimated ‘true’ effect size

when all studies are pooled, which may potentially have

resulted in an overemphasis of the importance of this field

of research. Certainly in small populations, there may be a

limit to the number of individuals that can be realistically

sampled,butwefoundnorelationshipbetweensamplesize

and population size (Fig. S3). Furthermore, even when few

individuals are available for sampling, researchers should

aim to maximize the number of markers assayed, and

ultimately genotypes scored, in order to have confidence in

theirmeasureofgeneticdiversity.Givenrecentdevelopments

aimed at reducing laboratory costs (e.g. Schuelke 2000;
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Wang et al. 2003; Symonds & Lloyd 2004; Guicking et al.

2008), and theoretical and empirical results showing that

accurate estimates of genome-wide heterozygosity require

large numbers of genotypes (Balloux et al. 2004; DeWoody

& DeWoody 2005; Väli et al. 2008; Alho et al. 2009), it is

somewhat surprising that this does not (yet) seem to have

resulted in a concurrent increase in the amount of

molecular datagatheredforHFCstudies.
Comparison of different genetic metrics

There has been a great deal of debate in the literature as to

which genetic metric most accurately acts as a surrogate of

the true inbreeding coefficient of an individual (see, for

example, Aparicio et al. 2006). Here we show that the

metrics MLH, SH, and IR are highly correlated and

nonindependent; we would encourage researchers to

report only one of these genetic metrics when publishing

HFC studies in the future, since reporting the correlation

between a fitness measure and multiple highly correlated

genetic measures is pseudoreplication. It is important that

this choice is made before data analysis begins, rather than

driven by posthoc choices based on statistical significance,

as this will result in another layer of bias in this field. In the

multivariate meta-analysis, we found similar mean effect

sizes with the three MLHinc genetic metrics, namely MLH,

IR and SH (Table 4); mean effect size for mean d2 was

smaller, and that for St d2 was not significantly different

from zero. The rationale for mean d2 as a metric has been

called into question (Hedrick et al. 2001; Tsitrone et al. 2001;

Goudet & Keller 2002; Slate & Pemberton 2002; although

see Neff 2004a; Kretzmann et al. 2006); and both d2

measures correlate only weakly with other, more direct,

measures of heterozygosity. Until microsatellite mutational

processes are more accurately elucidated, it seems likely

that the relevance of these measures will continue to be

debated (Slate et al. 2000), and as such we advocate the

use of the simplest metric, MLH, in future HFC studies.

Use of more than one metric is likely only justified when

certain population demographic histories exist, where the

use of MLH and mean d2 in tandem might actually provide

insight into evolutionary processes such as stabilizing

selection (Neff 2004b), or in populations where all indivi-

duals are highly heterozygous, and thus more traditional

measures of heterozygosity fail to differentiate between

individuals (Hedrick et al. 2001; Tsitrone et al. 2001; Goudet

& Keller 2002; Slate & Pemberton 2002).
Comparison of different trait types: what constitutes
an HFC study?

Studies reporting correlations between measures of indi-

vidual variationand genetic diversity arecollectively known

as HFC studies. To some extent, this is a misnomer — in the
published literature to date, the majority of traits for which

relationships with genetic diversity have been reported

(e.g. morphological traits) are likely to have little or no

linear relationship with fitness. For instance, many morpho-

logical and physiological traits are more plausibly under

stabilizing selection around an optimum, and this may also

be true for other traits as well. For example, it is often

assumed that life-history traits such as timing or age of first

breeding and clutch or litter size are under strong

directional selection, but these traits evolve in concert with

selection on other life-history traits, with which they may

exhibit genetic covariance (e.g. between clutch size and

offspring size); only fitness itself can always be assumed to

be under positive directional selection. In the absence of

directional selection on a character, there is no clear reason

to expect a relationship between that trait and heterozy-

gosity, however extensively this is measured, and however

high the variance in inbreeding within the population. In

this light, the expectation about the strength of effect size

for HFCs with respect to different classes of trait is perhaps

unrealistic. Interestingly, we found effect sizes to be of a

similar magnitude when classed as fitness or nonfitness

traits (see Appendix S2, Supporting information). While it

is possible we were too generous with our classification of

fitness traits and too conservative with our classification of

nonfitness traits, given that we also found reasonably simi-

lar effect sizes for life-history and morphological traits, our

results suggest that such broad classification of traits does

little to enhance or understanding of the underlying causes

of HFCs in animal populations. Thus, while we do not

advocate renaming HFC studies, as use of this term is now

widespread, we do advocate consideration of the likely

form of selection on characters, and it might be illumi-

nating to explore the relationship between the HFC effect

size for traits and the form of selection on those traits for

which empirical estimates of selection intensity are available.

Evolutionary theory would suggest that we should only

expect correlations of genetic diversity with fitness-related

traits because dominance variance is expected to be high

for traits with a direct effect on fitness, and such traits have

a more complex genetic architecture (Crnokrak & Roff

1995; DeRose & Roff 1999; Merilä & Sheldon 1999). It is thus

surprising to find that mean effect sizes for fitness and non-

fitness traits were of a similar (positive) magnitude. This

might be due to publication bias if papers reporting corre-

lations with nonfitness measures are more likely to be

published if effects are large, whereas papers assessing the

relationship with fitness are equally likely to be published

regardless of effect size. Additionally, measurement error

may be greater for life history than morphological and

physiological traits; such an explanation has been invoked

to explain why morphological traits appeared to exhibit

stronger directional selection than life-history traits (King-

solver et al. 2001).
� 2009 Blackwell Publishing Ltd
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Does demographic history influence the strength of HFCs?

We found no evidence that populations likely to have

higher inbreeding variance exhibited stronger HFCs than

populations likely to have low inbreeding variance (highly

inbred or outbred populations, Fig. 5, Table S2). While our

measures of demographic structure were quite crude, it is

perhaps surprising that they did not reveal a coarse

relationship in the expected direction. This may suggest

that a majority of studies are actually detecting local, rather

than general, effects (Balloux et al. 2004), or alternatively

that publication bias strongly clouds any pattern in the

data. A study by Hansson et al. (2004) employing within

brood comparisons found that even when the inbreeding

coefficient is held constant, more heterozygous individuals

were more likely to recruit to the local breeding population

— strong evidence for local effects. Testing for local effects

by regressing each individual marker with fitness is

becoming standard practice; such tests are valuable in

allowing us to understand the mechanisms underlying

HFCs, and may also allow future identification of

functionally important loci (e.g. Acevedo-Whitehouse

et al. 2006; Luikart et al. 2008). However, caution must

be exercised here: such multiple tests for significance will

result in spurious significant results unless authors are

careful to adjust the critical a level and thus guard against

inflated type I errors (Simes 1986; Aiken & West 1991). It

should also be remembered that single loci correlations are

not independent because heterozygosity is correlated

across loci (P. David, personal communication), and that,

even under the general effect hypothesis, we still expect

more than 5% of loci to show single locus HFCs. The

standard approach should be to examine the distribution

of effect sizes and identify outliers as being those effect

sizes that may be statistically, and biologically, significant.

A fruitful direction for future studies of HFC would be to

specifically address the impact of demographic factors by

sampling from multiple populations such as island and

mainland populations, populations with varying levels of

habitat disturbance, or populations from a continuum of

bottlenecking or founder events. While this approach will

not be possible in small, endangered populations with

limited range distributions, studies in more widespread

species may help provide insight into the demographic

processes important in endangered populations and thus

help to inform conservation decisions (Reed & Frankham

2003; Grueber et al. 2008).
The future of HFC studies — where to from here?

The results of this meta-analysis indicate that while

heterozygosity-fitness correlations may well be a general

phenomenon in many wild vertebrate populations, these

effects are very weak, equivalent in strength to correlations
� 2009 Blackwell Publishing Ltd
that explain < 1% of the variance in traits. As discussed

above, the various measures of heterozygosity now in

common use are not statistically independent, and should

not be used in concert, as this will result in psuedore-

plication. We would also encourage researchers to base

future studies of HFCs in wild populations on the mea-

surement of large numbers of individuals with larger mar-

ker panels. Furthermore, we would argue that the goal of

such studies should ultimately be to infer evolutionary

processes in populations (e.g. Slate et al. 2000), and as such

an increase in the number of studies reporting HFCs in

populations with known individual inbreeding coefficients

would be beneficial (e.g. Coulson et al. 1998; Slate et al.

2004; Bensch et al. 2006; Olafsdottir & Kristjansson 2008),

as would a more explicit investigation of the role of other

demographic processes such as bottlenecks, admixture

and the role of genetic purging. Another avenue of research

that may well prove fruitful is to investigate the role of

environmental stress on influencing the magnitude and

direction of HFCs detected with microsatellites. Stress,

such as periods of low food availability, high predation or

increased environmental disturbance, is a key factor in

reducing the fitness of populations, and individuals will

vary in their response to stress (Hoffmann & Hercus 2000).

This can result in an increase in genetic variance at the

population level, for example due to the expression of

genetic variance that was neutral under normal environ-

mental conditions (Badyaev 2005). Individuals with

increased heterozygosity may well possess the necessary

diversity of alleles required to adequately cope with

environmental stochasticity, this has been termed episodic

heterozygote advantage (Samollow & Soulé 1983). This

avenue of research has received limited attention to date,

however, the magnitude of HFC effects has been shown to

correlate positively with habitat fragmentation in Taita

thrush (Lens et al. 2000), salinity tolerance in guppy at the

population, but not individual, level (Shikano & Taniguchi

2002), and food limitation in common frogs (Lesbarreres

et al. 2005). Studies using allozyme variation have revealed

similar patterns (see, for example, Scott & Koehn 1990;

Audo & Diehl 1995; Myrand et al. 2002).

We would advocate that the number of genotypes

assayed be maximized, and would question the merit of

future studies reporting HFCs detected with small numbers

of microsatellite loci, given the lack of evidence that small

marker sets have any power to infer genome-wide hetero-

zygosity (Balloux et al. 2004; Slate et al. 2004; DeWoody &

DeWoody 2005; Hansson & Westerberg 2008; Väli et al.

2008). One of the most hotly debated issues in HFC

research at present is the relative contribution of local and

genome-wide effects. This can only be resolved by studies

assessing HFCs using large sets of markers. Furthermore,

we would encourage authors to test the covariance in hetero-

zygosity across markers, using the methods suggested by
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either Balloux et al. (2004) or Slate et al. (2004) in order to

assess how well their marker set is likely to infer total

genomic heterozygosity. A sobering conclusion is that,

despite the very large amount of work in this area, the only

factors that we have been able to find that explain variation

in the strength of HFCs are methodological. Hence, our

understanding of the biological reasons for variation in

their strength remains poorly developed.
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satellite diversity predicts recruitment of sibling great reed

warblers. Proceedings of the Royal Society B: Biological Sciences,

268, 1287–1291.

Hansson B, Westerdahl H, Hasselquist D, Åkesson M, Bensch S
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