
HZAR: hybrid zone analysis using an R software package

ELIZABETH P. DERRYBERRY,*†1 GRAHAM E. DERRYBERRY,‡1 JAMES M. MALEY†§ and
ROBB T. BRUMFIELD†

*Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA, †Museum of Natural
Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA, ‡Museum of Natural
Science, Louisiana State University, Baton Rouge, LA 70803, USA, §Moore Laboratory of Zoology, Occidental College, 1600
Campus Road, Los Angeles, CA 90041, USA

Abstract

We present a new software package (HZAR) that provides functions for fitting molecular genetic and morphological

data from hybrid zones to classic equilibrium cline models using the Metropolis–Hastings Markov chain Monte Car-

lo (MCMC) algorithm. The software applies likelihood functions appropriate for different types of data, including

diploid and haploid genetic markers and quantitative morphological traits. The modular design allows flexibility in
fitting cline models of varying complexity. To facilitate hypothesis testing, an autofit function is included that allows

automated model selection from a set of nested cline models. Cline parameter values, such as cline centre and cline

width, are estimated and may be compared statistically across clines. The package is written in the R language and is

available through the Comprehensive R Archive Network (CRAN; http://cran.r-project.org/). Here, we describe HZAR

and demonstrate its use with a sample data set from a well-studied hybrid zone in western Panama between white-

collared (Manacus candei) and golden-collared manakins (M. vitellinus). Comparisons of our results with previously

published results for this hybrid zone validate the HZAR software. We extend analysis of this hybrid zone by fitting

additional models to molecular data where appropriate.
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Introduction

Speciation geneticists have long made use of interspecific
crossing experiments in the laboratory to identify pheno-
typic traits and genetic loci (so-called speciation genes)
that contribute to reproductive isolation (Coyne & Orr
2004). For organisms that are not especially fecund nor
can be bred easily in captivity, hybrid zones provide a
natural speciation genetics laboratory. Hybrid zones are
geographic regions where genetically divergent taxa
meet and hybridize (Barton & Hewitt 1985, 1989; Harri-
son 1990). These regions are thought to be stable over
evolutionary time and can be maintained by environ-
mental gradients (Ender 1977) or by a balance between
selection against hybrids and the dispersal of parentals
into the zone (Barton 1979, 2001; Barton & Gale 1993). In
hybrid zones, genomic regions are exchanged differen-
tially through recombination such that some regions
could be impermeable to introgression (i.e. the

movement of alleles from one taxon to another) while
other regions introgress freely (Barton 1979; Harrison
1990; Rieseberg et al. 1999). Patterns of introgression can
be measured using cline analyses where the transition,
or cline, of genetic or morphological traits is estimated
across a hybrid zone.

Cline theory provides a conceptual framework to
understand the forces maintaining hybrid zones and to
help infer the relevant evolutionary parameters describ-
ing the introgression of traits across hybrid zones. Genes
or phenotypic traits characterized by transition clines
that are narrow relative to the dispersal capabilities of
the organism are thought to contribute more to repro-
ductive isolation than genes and traits characterized by
wider clines. Hybrid zones thus provide a powerful
venue in which to examine the forces contributing to
reproductive isolation between taxa and to explore the
evolutionary potential of introgression (Barton 1979;
Rieseberg et al. 1999).

The geographic structure of hybrid zones can be anal-
ysed by modelling the shape of clines for specific traits.
These clines estimate changes in the population
frequency of characters (alleles or phenotypes) along
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geographic transects. Cline shape can be modelled by
combining three equations (Szymura & Barton 1986,
1991) that describe a sigmoid shape at the centre of a
cline and two exponential decay curves on either side of
the central cline. Estimated parameters can then be used
to determine concordance and coincidence of clines from
different traits as well as to infer the strength of selection
against hybrids.

Hybrid zone analysis for R (HZAR) is a package for the
R programming environment (R-Development-Core-
Team 2008), which fits molecular (allele frequency) and
morphological data to equilibrium geographic cline
models (Szymura & Barton 1986, 1991; Barton & Gale
1993; Gay et al. 2008) using the Metropolis–Hastings
Markov chain Monte Carlo (MCMC) algorithm (Metrop-
olis et al. 1953; Hastings 1970). HZAR is licensed under the
GNU General Public Licence and leverages existing R
libraries, MCMCpack (Martin et al. 2011), which pro-
vides the Metropolis–Hastings algorithm, and foreach
(Revolution Analytics 2012), which distributes comput-
ing power.

HZAR was written to extend the capabilities of exist-
ing cline fitting software, to use the graphing and high-
performance computing utilities of R and to provide an
open-source package for the development of new meth-
ods by end-users. There are several software platforms
in which to fit geographic cline models, including Ana-
lyse (Barton & Baird 1995), ClineFit (Porter et al. 1997)
and Cfit (Gay et al. 2008). These programs are power-
ful, but are platform limited. Given the strong research
focus on hybrid zones in evolutionary biology, and the
shift towards implementing evolutionary models in R
language (e.g. ‘ape’ (Paradis 2006), ‘GEIGER’ (Harmon
et al. 2008), ‘LASER’ (Rabosky 2006), ‘apTreeshape’
(Bortolussi et al. 2006), ‘INTROGRESS’ (Gompert & Buerkle
2010), ‘HIest’ (Fitzpatrick 2013)), HZAR provides a pow-
erful statistical tool for hybrid zone studies. HZAR has
several significant strengths. The modular model set-up
allows models of varying complexity to be fit to the
observed data and automatic model selection functions
search for the best model. This automation-friendly
approach obviates user-implemented iterative model
fitting. HZAR allows different, appropriate likelihood
functions for genetic and morphological data. Finally,
the R platform allows HZAR to leverage existing highly
developed tools (such as R’s advanced plotting func-
tions), to be leveraged by other R libraries and to be
extended to incorporate new methods. HZAR does not
include all possible methods. We mention limitations
where they apply in the description of the software
below as well as suggest additional functions that
could be added by open-source users. Users need to
have some experience with R, particularly with the cre-
ation and handling of data frames, in order to use HZAR

successfully. Here, we describe the current functionality
of HZAR and illustrate its use by re-analysing a pub-
lished data set for an avian hybrid zone (Brumfield
et al. 2001, 2003).

Software usage and description

The functions contained in HZAR can be grouped into four
analysis steps: data set-up, model description, cline
model fitting and postprocessing. All functions are docu-
mented, and examples provided in the help file associ-
ated with the HZAR package (also see Data S3, Supporting
Information). Briefly, we describe the types of functions
associated with each of the analysis steps.

Current functionality of HZAR requires data collected
along one-dimensional transects of natural hybrid zones.
One-dimensional sampling of the hybrid zone assumes
minimal variation perpendicular to the cline. Setting a
one-dimensional transect in the wrong direction can
introduce error (Machol!an et al. 2008), and reducing
sampling to a line of localities can result in loss of power
and potential misinferences (Dufkov!a et al. 2011). Addi-
tional sampling should be carried out perpendicular to
the cline transect to ascertain the validity of using one-
dimensional data on a case-by-case basis. A very useful
future contribution to the package would be analysis of
multidimensional geographic data.

HZAR includes a function to aid users in processing
georeferenced data. This function generates a list of
distances from a user-specified locality and accounts
for the non-Euclidean geometry of geographic coordi-
nates.

HZAR assumes genetic equilibrium within loci and
equal relatedness across localities. The user should test
their data beforehand for any departure from Hardy–
Weinberg equilibrium (HWE). Localities with departure
from HWE will have too much influence on fitting
because the estimates of allele frequency at those locali-
ties will be overconfident (Phillips et al. 2004; Machol!an
et al. 2007, 2008). The user thus must account for depar-
ture from HWE by correcting effective sample sizes
(Szymura & Barton 1986) before running these data in
HZAR.

Data set-up

Data set-up functions assist in loading, formatting and
processing input data. Analysis begins with an input file
containing the genotypic or phenotypic data for a set of
admixed localities and for the parental localities. To
input genetic data, you will need one file. Input files for
genetic data should include information on locality dis-
tance, allele frequency (between 0 and 1) and number of
sampled alleles. (Note: users can run data in which the
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coordinates of each individual are unique. You can
generate a data object with one individual at each
locality. Assuming that each individual has two alleles
then, the observed frequencies would be 0, ½ or 1 with a
sample size of two. For haploid samples, the observed
frequencies would be 0 or 1 with a sample size of one.).
If all loci share the same information for distance and
number of sampled alleles, then these two columns of
information only need to be included once. However, if
loci have different numbers of sampled alleles, then one
should include a separate column of number of alleles
sampled for each locus. Header row labels must begin
with a letter and include only letters, numbers and a per-
iod (.). The table should include one additional row for
each locality that has been sampled. Column order is not
set, but we recommend including as the first column the
names of the sample sites, the second column the dis-
tance information, and each subsequent pair of columns
the frequency and the sample size of each individual
allele. These data can be formatted in spreadsheet soft-
ware and then saved as a text file that can be read into R
using standard functions, such as read.table or
read.csv (R-Development-Core-Team 2008). Read
the help files for read.table or read.csv to
insure correct formatting. Running the example scripts
provided in supplemental material will output example
data sets from the HZAR package to provide models for
formatting input files.

Once the allele frequency data are imported in table
format, it is necessary to create a data object (named
hzar.obsData) for each allele for each locus. This
object is created using the function hzar.doMolec-
ularData1DPops. If you are creating more than
one of these objects for molecular data, then it is useful
to collect all of these objects in a list. This list of objects
can be created using the list method in R. The argu-
ments are the data objects (see example file below). It is

recommended that you name each entry in the list. For
information on how to do this, see the help file for name
in R (Table 1).

Quantitative trait data (such as body weight) can be
imported in the format it was measured. For example,
body weight observations could be imported in grams.
HZAR requires that quantitative traits be reasonably
approximated by normal distributions. If the data are far
from normal, then the user can transform the data accord-
ing to allometric considerations (e.g. a log transform). If
the transformed data pass a test for normalcy, then the
transformed data can be used for quantitative trait cline
fitting (Barton & Gale 1993). To input quantitative trait
data, you will need one file. Input files should include
information on locality distance, observed trait means,
observed trait variances and number of sampled individ-
uals. If all traits share the same information for distance
and number of sampled individuals, then these two col-
umns of information only need to be included once.
However, if traits have different numbers of sampled
individuals, then one should include a separate column
of number of individuals sampled for each trait. Header
row labels must begin with a letter and include only
letters, numbers and a period (.). The table should include
one additional row for each locality that has been sam-
pled. Column order is not set, but we recommend includ-
ing as the first column the names of the sample sites, the
second column the distance information and each subse-
quent set of columns per trait the observed trait means,
observed trait variances and the number of individuals
sampled. These data can be formatted in spreadsheet soft-
ware and then saved as a text file that can be read into R
using standard functions, such as read.table or
read.csv (R-Development-Core-Team 2008). Read
the help files for read.table or read.csv to
insure correct formatting. See Table 2 and example data
set ‘manakinQuantitative’ in the HZAR package.

Table 1 Allele frequencies and number of samples for the hybrid zone between Manacus candei and M. vitellinus in northwestern Pan-
ama (Brumfield et al. 2001). These frequencies are taken from the example data file distributed with the software package

Locality_ID Locality Distance_(km) Adaa Adab Ada_nSamples

A Costa_Rica 0.00 0.10 0.90 10
B Rio_Sixaola 138.25 0.36 0.64 14
C Rio_Teribe 151.75 0.20 0.80 40
D Rio_Changuinola 159.50 0.45 0.55 40
E Rio_Oeste 182.25 0.31 0.69 42
F Quebrada_Pastores 188.25 NA NA NA
G Tierra_Oscura 198.50 0.55 0.46 22
H Rio_Uyama 201.25 0.57 0.43 44
I Rio_Robalo 210.00 0.44 0.56 52
J Chiriqui_Grande 230.75 0.63 0.38 40
K Valiente_Peninsula 319.50 0.43 0.58 40
L Soberania 569.50 0.68 0.33 40
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Once the quantitative trait data are imported in table
form, it is necessary to create a data object (named
hzar.obsData) for each observed trait. This object
is created using the function hzar.doNormalDa-
ta1DPops. If you are creating more than one of these
objects, then it is useful to collect all of these objects in a
list. This list of objects can be created using the list
method in R. The arguments are the data objects (see
example file below). It is recommended that you name
each entry in the list. For information on how to do this,
see the help file for name in R.

If you want to fit clines to all of the genetic and quan-
titative trait data objects at once, then you need to make
a combined list of these objects. You can join a list of
quantitative trait data objects to a list of genetic data
objects using the c(list1, list2) function in R.
If either list1 or list2 was not named before join-
ing, then the combined list will not be named (see help
file for name in R).

Model description

Functions for model description are used to create
objects that will be passed to functions for fitting cline
models. This is a two-step process for both genetic and
quantitative trait (e.g. morphological) data. You first
create a cline model object (object name, clineMetaMod-
el). For genetic data, you pass the hzar.obsData
object and the arguments describing the scaling and tails
of the cline model that you want to fit to
hzar.makeCline1DFreq. For quantitative trait
data, you pass the hzar.obsData object and the
arguments describing the tails of the cline model to
hzar.makeCline1DNormal. For frequency
based clines, HZAR automatically selects ascending or
descending direction as informed by the observed data.
For quantitative trait data, the direction of the cline does

not matter. If you want to use a list of hzar.obsData
objects, you can use the R function lapply. For molec-
ular data, fifteen different model variants can be
described in hzar.makeCline1DFreq. These
fifteen models represent three possible combinations of
trait interval [pMin, pMax] (fixed to 0 and 1; observed
values; estimated values) and five possible combinations
of fitting tails (none fitted; left only; right only; mirror
tails; both tails estimated separately). There is also a six-
teenth cline model, which is a null model. This last
model is only used in the postprocessing stage (see
below). All sixteen models can be fit to molecular data.
For quantitative trait data, five different types of models
can be described in hzar.makeCline1DNor-
mal. All models estimate trait mean and variance on
the left and right and additional variance in the centre,
as well as centre and width. The models vary in fitting
exponential tails (none fitted; left only; right only; mirror
tails; both tails estimated separately). To test hypotheses,
parameter values can be fixed at a specific value while
other parameters are estimated. One can also edit cline-
MetaModel objects to place limits on parameters. For
example, one can place limits on the width of the cline or
on the centre of the cline to limit the amount of parame-
ter space explored. This increases the speed and
efficiency of the MCMC process.

The second step of the process is to create an
hzar.fitRequest object using the func-
tion hzar.first.fitRequest.old.ML. This
function takes the clineMetaModel object and the
hzar.obsData object to create the hzar.fit-
Request object. An additional parameter can be set to
report diagnostics data. Some modifications can be made
to the hzar.fitRequest object; you can set the
chain length, the burn-in, the thin (generations subsam-
pled) and the random number generator seed used in
the MCMC process. The default settings for these

Table 2 Showing data for beard length (mm) to demonstrate input format appropriate for HZAR. Locality ID corresponds to the Locality
ID for molecular data (along with Locality name) and nSamples refers to sample size (number of alleles)

Locality_ID Locality Distance_(km) Observed_mean Observed_variance nSamples

A Costa_Rica 0.00 12.43 0.80 21
B Rio_Sixaola 138.25 11.75 0.92 4
C Rio_Teribe 151.75 11.94 0.65 9
D Rio_Changuinola 159.50 12.22 0.69 9
E Rio_Oeste 182.25 13.17 0.95 15
F Quebrada_Pastores 188.25 12.50 0.25 5
G Tierra_Oscura 198.50 12.63 3.25 11
H Rio_Uyama 201.25 12.18 1.48 20
I Rio_Robalo 210.00 16.33 5.59 20
J Chiriqui_Grande 230.75 17.40 1.60 10
K Valiente_Peninsula 319.50 18.80 3.70 5
L Soberania 569.50 18.68 2.58 22
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parameters of the MCMC operator are adequate in most
cases, but the user can make modifications if desired.

Cline model fitting

To begin the process of fitting the desired cline model,
the user passes the hzar.fitRequest object to
the function hzar.doFit. This function is used to fit
the cline model. The output of this function is a second
hzar.fitRequest object that contains the infor-
mation from the first object plus the results of the fit. The
user then takes this second object and passes it to the
function hzar.nextFitRequest. This function
uses the results of the previous fit to optimize the covari-
ance matrix used to drive the MCMC process but does
not fit a cline model. This function updates the seed
channel of the random number generator so that the
random number process for the second fit request is
independent of the first fit request. The default setting
for the second fit request has the same values for
the chain length, the burn-in and the thinning, but
the user can change these settings if desired. The output

of hzar.nextFitRequest is a third
hzar.fitRequest object that can then be passed
back to hzar.doFit. The user can repeat this pro-
cess iteratively to create new runs of the same MCMC
chain. It is important to note that these runs within the
same chain are not independent of one another.

To check whether runs are stable and converging, one
can plot the raw data from the MCMC process using a
standard plot function of the MCMC raw entry (foo
$mcmcRaw) from an hzar.fitRequest object
returned from hzar.doFit. Plotting the raw MCMC
data returns a plot with two columns: the first column is
the trace (value of the parameter versus the number of
generations), and the second column is the density distri-
bution (relative density vs. parameter value). The num-
ber of rows returned is equal to the number of free
parameters. For example, plotting the raw MCMC data
for a model in which only width and centre vary will
return plots of width and centre. Fig. 1 illustrates what
these data look like.

To create an independent chain, the user must pass
the first hzar.fitRequest object directly to the
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Fig. 1 A plot of the raw MCMC data for a
model in which only width and centre
vary. The first column is the trace (value
of the parameter vs. the number of gener-
ations), and the second column is the den-
sity distribution (relative density vs.
parameter value). Y-axis in left panels
and X-axis in right panels are the values
of estimated parameter (km). Y-axis in
right panel is the density distribution.
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function hzar.nextFitRequest to create a new
second hzar.fitRequest object. This step does
not fit the cline model, but it does create an independent
object. The user then passes this new second
hzar.fitRequest object to hzar.doFit. The
output hzar.fitRequest object is then passed
again to hzar.nextFitRequest to create a new
hzar.fitRequest object. As described above, the
user can repeat this process iteratively to create new runs
for this second, independent MCMC chain. The user can
repeat this process to create as many independent chains
with as many dependent runs as desired.

There is a function that automates the within-chain
process described above called hzar.chain.do-
Seq. This function iteratively passes hzar.fitRe-
quest objects to hzar.doFit and then to
hzar.nextFitRequest as many times as the
user specifies. This function then returns a list of all the
hzar.fitRequest objects that contain results. If
the argument collapse of hzar.chain.do-
Seq is set to TRUE, then the function will return a sin-
gle hzar.fitRequest object with all of the results
concatenated. Postprocessing functions can use either
output format.

If you have a list of hzar.fitRequest objects
representing independent chains, then you can use the R
function lapply with hzar.chain.doSeq to
run all of the independent chains automatically. The
return will be a list of all of the results. Users familiar
with R can use functions (e.g. lapply or mclap-
ply) to automate this process for fitting multiple mod-
els. Functions exist within postprocessing to handle
complex lists of results as long as all of the models share
the same hzar.obsData objects.

To provide a benchmark of run-time, if one runs the
example script in this manuscript, which fits three differ-
ent cline models to one molecular locus and one morpho-
logical trait, the total run-time is 15.5 min (on a Linux
(64bit, v2.6.38) 2.3 GHz Intel Core 2 CPU). Each of the
fittings includes ten runs of 100,000 generations each.

Postprocessing

Once clines are fit, HZAR provides a set of postprocessing
functions. These functions can aggregate multiple fits to
allow for model comparison and model selection using
AIC. They can also generate summary statistics, confi-
dence intervals and plots of results. We have also
included limited ability to generate likelihood profiles of
single parameters. The R platform allows users to extend
these functions as needed.

To perform model selection, it is necessary to
aggregate the results from multiple cline fits if models
were fit individually, or to split results if models were

fit using batch processing. The function hzar.da-
taGroup.add aggregates results from the same
model for the same hzar.obsData object. The
output of this function is an hzar.dataGroup
object. To concatenate the results for the same
hzar.obsData object and automatically split dif-
ferent models, the user can use the function
hzar.make.obsDataGroup. The output of
this function is an hzar.obsDataGroup object.
The function hzar.dataGroup.null repre-
sents the null model hypothesis that there is no cline
in the sampled region. This function generates an
hzar.dataGroup object that can be compiled
into the hzar.obsDataGroup object as a point
of comparison in model selection. These objects can be
passed to model selection functions.

HZAR compares model performance using Akaike
information criterion (AIC) or the AIC score corrected
for small sample size (AICc). For a given trait, the model
with the lowest AIC (AICc) score is the model that best
fits the data. The function hzar.AIC.default
(hzar.AICc.default) calculates the AIC (AICc)
for the given likelihood, number of parameters and num-
ber of observations for a given object. The function
hzar.AIC.hzar.obsDataGroup (hzar.
AICc.hzar.obsDataGroup) returns a table of
AIC (AICc) values for all of the models contained in an
hzar.obsDataGroup object. The package also
provides the function hzar.get.ML.cline for
extracting the maximum-likelihood cline from an
hzar.dataGroup object. Summary statistics for
model fitting can be extracted from an hzar.data-
Group object using hzar.getLLCutParam.
This function returns the range of parameter values that
are within two log-likelihood units of the maximum like-
lihood for a provided character vector of parameters.
Using a 2-unit support envelope around a cline allows
one to visualize uncertainty in model fit (Devitt et al.
2011; Macholan et al. 2011).

A likelihood profile is a representation of the maxi-
mum likelihood of a model as a function of a single
fixed parameter value, such as centre (Phillips et al.
2004; Alexandrino et al. 2005; Bimova et al. 2011; Devitt
et al. 2011). The independent variable is a range of
parameter values, and the dependent variable is the
maximum likelihood for the given parameter value. For
example, the independent variable may be a range of
centre values (such as 10, 20 or 30 km), and the depen-
dent variable is the maximum likelihood of the model
given each of those fixed centre values. Users may
want to examine likelihood profiles in order to gauge
the quality of the model fitting or to compare cline
shape across multiple genetic markers and/or quantita-
tive traits. Profiling reduces the dimensionality of
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MCMC searches, thus reducing overconfidence in esti-
mates by increasing the chance that the search finds all
solutions within 2 units of support. Profiling can also
facilitate nested hypothesis tests, for example, for con-
cordance and coincidence. A straightforward method to
create the likelihood profile involves estimating the
maximum likelihood at a series of fixed parameter val-
ues. Users can generate likelihood profiles manually by
choosing one model as the base (typically the best
model identified during model selection) and deriving
secondary models where the specific parameter is fixed
to each value. In HZAR, this process is automated to a
certain extent. The workflow is such that users give the
function hzar.profile.dataGroup an
hzar.dataGroup object of the desired model to
profile and the desired parameter to profile. This func-
tion will extract the model from the data group and
use either additional parameters given to the method
or estimates extracted from the data group. The result
is a list of hzar.fitRequest objects. Each of
those objects reuses the original model associated with
the data group but fixes the specified parameter to each
of a series of values. The series of values are derived
by default based upon the information in the
hzar.dataGroup object, but can be specified
explicitly by the user. The list of hzar.fitRe-
quest objects then needs to be fitted using methods
described above in cline model fitting. There is a set of
specialized methods to automate this process, namely
hzar.doChain.multi and hzar.doFit.
multi. Please see help files for details on the func-
tions hzar.profile.dataGroup, hzar.
multiFitRequest, hzar.doChain.multi
and hzar.doFit.multi. As the output from the
fitted objects is a series of models with the same obser-
vational data, the trace information can be compiled for
postprocessing using the method hzar.make.
obsDataGroup. Extracting the estimated maxi-
mum-likelihood value for each of the parameter values
is not yet automated, but can be performed manually
to produce a graph of the likelihood profile.

Finally, HZAR provides a series of plotting functions
for plotting results. These plotting functions can be used
in conjunction with generic R plotting functions to for-
mat plots for manuscript preparation. Here, we describe
the three most important plotting functions provided in
HZAR. The function hzar.plot.obsData plots
observation data (i.e. mean frequencies for molecular
clines and mean values for morphological clines). This
function can be used to check whether data were entered
correctly. The function hzar.plot.cline plots
the cline from an hzar.cline object, the maximum-
likelihood cline (and, by default, the observation data)
from an hzar.dataGroup results object or the

maximum-likelihood cline for each model on top of the
observation data from a hzar.obsDataGroup
object.

HZAR also allows the user to produce fuzzy cline plots,
which allow the user to view the distribution of uncer-
tainty in a model prediction. A fuzzy cline plot allows
the user to view the distribution of the estimated true
local mean given the selected model. The function
hzar.plot.fzCline, using an hzar.data-
Group object, plots the maximum-likelihood cline and
observed frequency data over the associated fuzzy cline
region. This function provides two separate approaches
to constructing the fuzzy cline region. The first method
extracts a subset of the cline model distribution gener-
ated from the MCMC trace, either using a subset which
is 95% credible or the subset that is within two log-likeli-
hood units of the maximum likelihood. The approach
takes a set of distances (e.g. 20 evenly spaced points)
across the observed sample localities and calculates the
maximum and minimum estimated allele frequency (or
mean trait value) at each distance for all of the clines in
the model subset. The fuzzy cline region is the region
enclosed by these maximum and minimum values across
the transect. The second method constructs the fuzzy
cline plot (using either the entire MCMC trace of clines
or a randomly chosen subset of clines) by calculating the
estimated allele frequency (or mean trait value) for each
of those clines and then uses either the 95% confidence
interval or 95% credible interval of that distribution for
each locality. The default region for the function is the
region enclosed by the maximum and minimum values
of the 95% credible subset of the cline model distribution.
Please see Fig. 2 for an example of such a plot. Use of
this function depends on a stable, convergent MCMC
trace. The two log-likelihood unit methods and the 95%
confidence interval method are both dependent on the
MCMC traces being well sampled. The second method
for constructing the fuzzy cline plots is more computa-
tionally intensive than the first method.

Analysis of a sample data set: Manakin Hybrid
Zone

Brumfield et al. (2001, 2003) fit cline models to a series of
molecular and morphological data sets from a natural
hybrid zone between two species of manakins (Manacus
candei and M. vitellinus). This analysis was originally
conducted using the software program Analyse v1.3
(Barton & Baird 1999). Here, we repeat this analysis
using the same data sets but on the HZAR platform in R.
We use the same sample sizes as Brumfield et al. (2001)
to make our results comparable. Overall, our results are
similar to those reported in Brumfield et al. (2001),
demonstrating the functionality of HZAR. To demonstrate
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automated model fitting, we fit all possible models to
these data sets. Below, we provide a detailed comparison
of these analyses.

Molecular data

Brumfield et al. (2001) fit three cline models to seven
genetic loci using the program Analyse v1.3 (Barton &
Baird 1999). The three models were as follows: model I:
pmin/pmax set to observed values with no exponential
decay curves (tails) fitted, model II: pmin/pmax estimated

with no tails fitted and model III: pmin/pmax estimated
and both tails fitted. We fit these same models to the
same genetic loci using HZAR (e.g. script and output fit-
ting these three models to one of the loci, please see Data
S1 and Data S2, Supporting Information), and compared
our results to those generated by Analyse v1.3. One
important difference between the two software platforms
is the parameters used to estimate tails. Analyse v1.3 fits
tails using the parameters b and Θ, whereas HZAR uses d
and s, which represent the parameters d and t described
by Gay et al. (2008). The latter parameters can be trans-
formed to the former parameters. Because of this differ-
ence in parameter usage, we expected quantitative but
not qualitative differences in our results for model III.

We also fit the 15 possible models to the same
seven genetic loci to demonstrate the full functionality
of HZAR. Users must select cline models to compare
based on the biological relevance of those cline mod-
els to their organism.

Results. Of the three models, both programs selected the
same model as the best-fit model for each of the seven
genetic loci (Table 3). The log-likelihood scores were
nearly identical across software platforms (Table 3). For
the three models, we also compared estimated parame-
ters for the best-fit model for each of the genetic loci.
Values for all estimated parameters were identical or
nearly identical for all seven genetic loci (Table 4). We
plotted the maximum-likelihood clines for the best-fit
model for each of the seven genetic traits to facilitate
comparison with the results in Brumfield et al. (2001)
(see Fig. 3).
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Fig. 2 A plot of the maximum-likelihood cline and observed
frequency data over the associated fuzzy cline region (95% cred-
ible cline region) as returned by the function hzar.-
plot.fZCline.

Table 3 Log-likelihood scores for fitted clines under different models using Analyse v1.3 (nonshaded columns) and HZAR (shaded
columns)

Locus ln L Model I ln L & AICc Model I ln L Model 2 ln L & AICc Model 2 ln L Model 3 ln L & AICc Model 3

Adaa !9.6* !9.7 !8.3 !8.2 !7.9 !8.3
23.3* 24.6 32.9

Ak-2a !43.9 !43.9 !6.2* !6.3 !6.2 !5.7
91.8 20.6* 27.8

Pgm!2b !17.7 !17.7 !6.7* !6.7 !6.7 !5.9
39.4 21.5* 28.1

Gsrb !15.7 !15.7 !5.8* !5.8 !5.0 !6.5
35.4 19.8* 29.3

k5b !36.9 !34.6 !12.2 !11.6 !6.6* !6.4
73.2 31.2 29.2*

pSCN3b !17.9 !19.1 !2.6* !2.6 !1.2 !1.4
42.3 13.3* 19.1

mtDNAb !19.1 !21.3 !1.8* !1.9 !1.8 !1.9
46.7 11.9* 20.5

*Denotes the model that provides the best fit with the fewest number of estimated parameters.
Brumfield et al. (2001) compared models using goodness-of-fit tests, and we compared models using AICc values (lowest value indi-
cates best fit). Table is modified from Brumfield et al. (2001) Table 3.
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We next compared the fit of all 15 models for the
seven genetic loci. In some cases, we found that the best-
fit model was different from the original model found by
Brumfield et al. (2001), although in most cases the origi-
nal model provided the best or an equal fit (Table 5). If
we adopt the convention of selecting as the best model
one that has an AICc value more than two points less

than the AICc of the next best model, then we found a
best-fit model for two of the seven loci (k5b and pSCN3b)
different from Brumfield et al. (2001). For k5b, the original
best-fit model was one that estimated pmin/pmax and fits
both tails separately. The new best-fit model for this
locus is one that estimated pmin/pmax and fits only a right
tail. For pSCN3b, the original best-fit model was one that
estimated pmin/pmax and fits no tails. The new best-fit
model for this locus is one that used the observed values
of pmin/pmax and fit mirror tails (Table 5).

Table 4 Parameter estimates for the genetic clines using Analyse v1.3 (nonshaded columns) and HZAR (shaded columns)

Locus w c pmin pmax

Adaa 262.5 (110.0–856.4) 171.0 (108.7–200.1) 0.1 (fixed) 0.675 (fixed)
263.1 (96.2–630.0) 170.9 (109.9–201.2) 0.1 (fixed) 0.675 (fixed)

Ak-2a 9.9 (0.9–15.3) 208.6 (207.3–210.2) 0.0 (0.0–0.1) 1.0 (1.0–1.0)
9.5 (0.1–15.7) 208.7 (207.2–210.2) 0.0 (0.0–0.1) 1.0 (0.9–1.0)

Pgm-2b 7.7 (0.5–12.0) 206.5 (201.5–209.5) 0.0 (0.0–0.0) 0.8 (0.7–0.8)
7.7 (0.07–12.2) 206.4 (201.3–209.9) 0.0 (0.0–0.0) 0.8 (0.7–0.8)

Gsrb 2.9 (0.2–37.9) 209.9 (202.1–223.1) 0.0 (0.0–0.1) 0.3 (0.2–0.4)
5.7 (0.009–44.3) 209.9 (201.7–224.5) 0.0 (0.0–0.1) 0.3 (0.2–0.4)

k5b 10.4 (7.2–14.4) 208.2 (206.2–208.4) 0.1 (0.1–0.1) 1.0 (1.0–1.0)
8.1 (2.9–18.4) 208.1 (204.7–210.0) 0.1 (0.1–0.1) 1.0 (1.0–1.0)

pSCN3b 2.8 (0.6–15.4) 209.4 (206.7–209.9) 0.2 (0.1–0.2) 1.0 (0.9–1.0)
1.4 (0.1–15.5) 209.7 (206.6–210.0) 0.2 (0.1–0.2) 1.0 (0.9–1.0)

mtDNAb 11.1 (6.9–19.0) 208.3 (206.4–210.3) 0.0 (0.0–0.0) 0.9 (0.9–1.0)
11.2 (6.8–19.5) 208 (206.0–210.8) 0.0 (0.0–0.0) 1.0 (0.9–1.0)

Locus bc/dL Θc/sL Βv/dR Θv/sR

k5b 1535.9 (1520–1556) 1.0 (0.2–1.0) 3.1 (2.6–13.7) 0.1 (0.0–0.1)
204.0 (4.0–628.9) 0.3 (0.0–1.0) 1.2 (0.0–7.8) 0.1 (0.0–0.6)

Two log-likelihood unit support limits are presented in parentheses. Cline width is presented as 1/maximum slope (w). Parameter c is
the cline centre measured in distance (km) from locality 1, pmin is the minimum estimated frequency at the west end of the cline, and
pmax is the maximum estimated frequency at the eastern end. The exponential decay curves (tails) shape parameters are given as b and
Θ for Analyse v1.3 results and as d and s for HZAR results. Table modified from Brumfield et al. (2001) Table 4.
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Fig. 3 Plot of allele frequency vs. distance for seven genetic loci
describing the Manacus hybrid zone in Panama. Each line is the
maximum-likelihood cline for the best-fit model from the origi-
nal three models compared in Brumfield et al. (2001). Legend:
Adaa (red); Ak-2a (purple); Gsrb (green); Pgm-2b (cyan); k5b

(orange); pSCN3b (black); mtDNAb (blue).

Table 5 The AICc value for the best-fit model from the Brum-
field et al. (2001) three-model comparison compared with the
AICc value for the best-fit model from the 15-model comparison

Locus Brumfield best-fit model 15-model best-fit model

Adaa 23.3 (pmin/pmax observed,
no tails)

22.9 (pmin/pmax fixed,
right tail)

Ak-2a 20.6 (pmin/pmax estimated,
no tails)

19.5 (pmin/pmax fixed,
mirror tails)

Pgm-2b 21.5 (pmin/pmax estimated,
no tails)

21.5 (pmin/pmax estimated,
no tails)

Gsrb 19.8 (pmin/pmax estimated,
no tails)

19.7 (pmin/pmax estimated,
no tails)

k5b 29.2 (pmin/pmax estimated,
both tails)

25.1 (pmin/pmax estimated,
right tail)

pSCN3b 13.3 (pmin/pmax estimated,
no tails)

9.3 (pmin/pmax observed,
mirror tails)

mtDNAb 11.9 (pmin/pmax estimated,
no tails)

10.6 (pmin/pmax fixed,
right tail)
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We also plotted the maximum-likelihood cline for the
best-fit model for each trait from the 15-model compari-
son (Fig. 4). One thing to note from the figure is that
although the best-fit model for Adaa did not have an
AICc value much lower than that of the original best-fit
model, the maximum-likelihood cline of this model
(illustrated in red in Fig. 4) now indicates a cline centre
coincident with the other seven genetic loci, in contrast
to the displaced centre found by Brumfield et al. (2001).

Morphological data

Brumfield et al. (2001) took 11 morphological measure-
ments on specimens from the Manacus hybrid zone. Four
of these morphometric characters (mass, wing length, tail
length and tarsus length) were collapsed into a principle

Table 6 AICc values for five quantitative trait model compari-
sons for each of the morphological traits

Models
Collar
colour

Beard
length

Epaulette
width

Belly
colour

model.none 921.2 544.2 603.7 1088.6
model.left 925.8 544.3 598.4* 1092.4
model.right 843.5* 548.2 605.1 1062.5*
model.mirror 867.1 542.8* 607.6 1090.4
model.both 848.0 550.2 604.9 1080.0

The models vary in fitting exponential tails (model.none = none
fitted; model.left = left only; model.right = right only;
model.mirror = mirror tails; model.both = both tails estimated
separately).
*indicates the best-fit model.
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Fig. 4 Plot of allele frequency vs. distance for seven genetic loci
describing the Manacus hybrid zone in Panama. Each line is the
maximum-likelihood cline for the best-fit model from the
15-model comparison. Legend: Adaa (red); Ak-2a (purple); Gsrb

(green); Pgm-2b (cyan); k5b (orange); pSCN3b (black); mtDNAb

(blue).

Table 7 Parameter estimates for the morphological clines using
Analyse v1.3 (nonshaded columns) and HZAR (shaded columns)

Locus w c

Collar colour 4.4 157.6
1.2 (0.1–5.6) 155.4 (152.3–159.3)

Beard length 10.3 208.8
9.9 (4.4–15.4) 208.5 (207.7–209.8)

Epaulette width 65.2 200.0
30.0 (15.0–34.0) 201.1 (198.6–203.5)

Belly colour 3.0 157.8
4.3 (0.2–7.6) 159.2 (153.7–159.8)

Locus bc/dL Θc/sL Βv/dR Θv/sR

Collar
colour

96.4 0.4 54.2 0.0
no tail no tail 0.4

(0.0–2.4)
0.01
(0.0–0.05)

Beard
length

1.3 0.8 0.9 0.2
7.3
(2.7–8.9)

0.08
(0.05–0.27)

7.3
(2.7–8.9)

0.08
(0.05–0.27)

Epaulette
width

7500.0 0.9 12.3 0.1
0.6
(0.2–2.9)

0.18
(0.09–0.26)

no tail no tail

Belly
colour

1041.2 0.2 8.2 0.0
no tail no tail 0.1 (0.0–0.9) 0.06

(0.0–0.11)

Two log-likelihood unit support limits are presented in parenthe-
ses. Cline width is presented as 1/maximum slope (w). Parame-
ter c is the cline centre measured in distance (km) from locality 1.
The exponential decay curves (tails) shape parameters are given
as b and Θ for Analyse v1.3 results and as d and s for HZAR

results. Table modified from Brumfield et al. (2001) Table 4.
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Fig. 5 Plot of the per cent characteristic value vs. distance for
four morphological traits describing the Manacus hybrid zone in
Panama. To facilitate cline comparison, results are plotted as
ascending clines, which for quantitative data necessitates plot-
ting the per cent characteristic value from the unscaled cline
function. Each line is the maximum-likelihood fundamental
cline for the best-fit model from the five-model comparison. Leg-
end: beard length (red); belly colour (orange); epaulette width
(black); collar colour (blue).
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component vector (PC1) capturing size variation.
The four characters describing plumage variation – belly
colour, collar colour, beard length and epaulette width –
were fitted separately. Brumfield et al. (2001) fit the most
general model of the three fitted to the genetic loci
(model III). Model III estimates pmin/pmax and fits both
tails. Before clines were fit to the morphological character
locality means, individual measurements were scaled to
values between zero and one. The clines for PC1 and
beard length were similar in position to the genetic
clines, and the cline for epaulette width was broader and
slightly northwest of these clines’ centres but not dramat-
ically displaced. The two plumage colour clines, how-
ever, transitioned steeply about 50 km northwest of the
other cline centres and coincident with the Changuinola
River.

Using HZAR, we fit the five different quantitative trait
models to the four characters describing plumage varia-
tion: beard length, collar colour, belly colour and epau-
lette width (e.g. script and output fitting these models to
one of the traits, please see Data S1 and Data S2,
Supporting Information). HZAR requires that quantitative
traits be reasonably approximated by normal distribu-
tions, and past studies suggest that quantitative trait like-
lihood functions can be fit as long as the parental
populations can be reasonably approximated by normal
distributions (Barton & Gale 1993). This is the case for
the manakin parental populations for these four quanti-
tative traits. We selected the best-fit model based on
comparison of AICc values.

Results. A model with a right tail to the cline provided
the best fit to collar colour and belly colour, whereas a
model with a left tail provided the best fit to epaulette
width (Table 6). For beard length, a mirrored left tail and
right tail provided the best fit (Table 6).

Because we did not rescale the plumage characters as
in Brumfield et al. (2001), we can perform a qualitative if
not quantitative comparison. In Table 7, we provide the
estimated value and the two log-likelihood unit support
limits for each estimated parameter for each trait for the
best model. A comparison of the Analyse v1.3 and HZAR

results found a good agreement between the estimated
centre values. The width estimates fell within two log-
likelihood units for collar colour, belly colour, and beard
length, but not for epaulette width.

We also plotted the maximum-likelihood cline for the
best-fit model for each trait from the five-model compari-
son (Fig. 5). Note that similar to the results in Brumfield
et al. (2001), we found that the centres of the beard length
and epaulette width clines are similar to those of the
seven genetic loci, whereas the collar colour and belly
colour clines are shifted northwest by approximately
50 km, coincident with the Changuinola River.
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