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Review
Glossary

AIC: Akaike information criterion, a heuristic used to determine whether the

improvement in fit of a more complex model justifies the additional

parameters it introduces.

Bayesian skyline plot: a graph showing the curve of inferred population size

over time (and its support intervals) based on multiple sampled genealogies.

Coalescence: two lineages tracing back to a common ancestral haplotype at a

particular time.

Coalescent theory: mathematics governing the expected distribution of times

back to a common ancestor in a population sample.

Driving values: assumed values of the parameters to be estimated (such as Q

or migration rate) which are used to guide a likelihood-based search. Driving

values too far from the unknown true values of the parameters will lead to

biased estimates.

Effective population size: the size of an idealized (Wright-Fisher) population

with the same rate of genetic drift as the given population. Effective population

size is usually smaller than census size as a result of factors such as unequal

reproductive success.

ESS: effective sample size. When data points (such as sampled genealogies)

are autocorrelated, their information content is reduced. ESS estimates the size

of a fully independent data set having the same information content as the

given autocorrelated data. An ESS of 200 or more is recommended for

genealogy sampling.

FST: summary statistic based on comparison of within-group and between-

group genetic diversity, used to estimate population sizes and migration rates.

Genealogy: the ancestral relationship, for a particular segment of the genome,

among sampled chromosomes. This takes the form of a branching tree for

non-recombining data, but becomes a tangled graph (the ‘‘ancestral recombi-

nation graph’’) with recombination.

Infinite-sites model: a mutational model in which no site mutates more than

once in the history of the sample, thus suitable only for data in which

mutations are rare.

K-allele model: a mutational model in which there are k distinct alleles with

equal chance of mutation from any allele to any other.

Migration: as used in this paper, gene flow between subpopulations.

Ne: effective population size, the size of an idealized theoretical population with

the same amount of genetic drift as the given real population. In most

organisms, effective size is less than census size because of factors such as

overlapping generations, reproductive inequality and sex bias.

Tajima’s D: a summary statistic which detects forces such as natural selection

by their effects on two different estimators of the population size.

Theta (Q): 4Nem in diploids or 2Nem in haploids, the product of the effective

population size Ne and mutation rate m. This parameter measures the capacity

of a population to maintain genetic variability. Among organisms of similar
Coalescent genealogy samplers attempt to estimate
past qualities of a population, such as its size, growth
rate, patterns of gene flow or time of divergence from
another population, based on samples of molecular
data. Genealogy samplers are increasingly popular
because of their potential to disentangle complex popu-
lation histories. In the last decade they have been widely
applied to systems ranging from humans to viruses.
Findings include detection of unexpected reproductive
inequality in fish, new estimates of historical whale
abundance, exoneration of humans for the prehistoric
decline of bison and inference of a selective sweep on the
human Y chromosome. This review summarizes avail-
able genealogy-sampler software, including data
requirements and limitations on the use of each pro-
gram.

Introduction
The larger a population is, the more distantly, on average,
its members are related to one another. Coalescent theory
quantifies this intuitive idea by relating the patterns of
common ancestry within a sample to the size and structure
of the overall population. Figure 1 shows a population of 20
gene copies, 3 of which have been sampled, and the points
of common ancestry (called coalescences) among those
samples. The distribution of common-ancestry times was
originally called the n-coalescent [1,2], now usually shor-
tened to coalescent. Today it is widely used to study
historical size and other attributes of populations for which
molecular sequence data are available.

It is generally impossible to consider all possible ances-
tral relationships among sampled sequences. Instead,
researchers have developed approaches that explore many
relatively probable ancestral patterns, or genealogies.
These methods can be collectively termed coalescent gen-
ealogy samplers, and have been implemented in a variety
of software packages. These packages differ in how they
explore genealogies, and in the population attributes and
biological systems they can model.

The original formulation of the coalescent could only be
applied to a single, constant-size population. Researchers
have since extended the coalescent to account for factors
including population growth [3], population subdivision
[4], genetic recombination [5] and natural selection [6].
It has also been used to infer approximate dates of
mutations [7] and population divergences [8]. Figure 2
contrasts genealogies from constant-size, shrinking and
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growing populations, showing how the relative timing of
coalescences varies with growth rate.

Coalescent genealogy samplers have been used to study
diverse populations of organisms, including HIV-1 isolates
from a clinical outbreak [9], rabbits in a European hybrid
zone [10], Beringian bison in the Pleistocene and Holocene
epochs [11] and Japanese conifers [12]. When used prop-
erly, these samplers are powerful tools for gaining insight
into population histories. In this review, I will discuss the
advantages of genealogy samplers over competing
mutation rate, it functions as a measure of relative effective population size.

Care should be taken when reporting or interpreting Q because some studies

use units of mutations per site, and others of mutation per locus.
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Figure 1. Coalescent embedded in population. A population of 20 gene copies showing the coalescent genealogy of 3 sampled copies. The expected time to go from k

copies to k � 1 copies is exponentially distributed with a mean of Q/[k(k � 1)], where Q is the product of effective population size and mutation rate.

Review Trends in Ecology and Evolution Vol.24 No.2
approaches; describe suitable data for a sampler-based
study; compare the features and limitations of a variety
of available samplers; and describe approaches to validat-
ing data-sampler analysis.

Why use genealogy samplers?
For many real biological systems, coalescent genealogy
samplers providemore realistic estimates of historical size,
expansion rate and other population parameters than
summary statistics such as FST can. Summary statistics,
although generally easier to compute and understand, are
vulnerable to the presence of multiple evolutionary forces.
For example, variable diversity among loci impairs the
ability of FST to detect gene flow [13], and the presence of
recombination compromises the use of Tajima’s D to detect
natural selection [14]. If the researcher attempts to accom-
modate these complications within summary statistics,
statistical power can suffer, as was seen in an attempt
to infer population divergence using FST [15].

An alternative is to estimate the genealogy underlying
a population sample and use this as the basis for
parameter estimation [16–18]. However, except in a
few cases of artificially manipulated populations,
this genealogy cannot be known with certainty. Inferring
population parameters from a single genealogy estimate,
as with summary statistics, can suffer from bias and
fail to provide realistic confidence intervals around
estimates, especially when recombination is present
[19].

By contrast, all of the genealogy samplers discussed in
this review rely on making a large collection of possible
genealogies and deriving parameter estimates from the
collection as a whole, not from any single genealogy. Use
of genealogies promises increased statistical power and
robustness in complex situations; use of multiple genea-
logies allows accurate assessment of the potential error
of the estimates. This is similar to the rationale behind
Bayesian phylogenetic methods such as MRBAYES [20].
The population-genetic programs discussed here [21–28]
share history, evolutionary models and, in some cases,
computer code with well-developed phylogenetic
methods and software which came before them.
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Figure 2. Growth signature in genealogies. Genealogies sampled from (a) constant-size, (b) exponentially shrinking and (c) exponentially growing populations.
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Data requirements for genealogy samplers
All existing genealogy samplers rely on random samples
from the population or populations of interest, except that
the number of samples from each subpopulation can be
chosen arbitrarily as it is not part of the coalescent model.
Selecting particularly interesting or relevant individuals
introduces a severe bias: removing all identical individuals
from a sample will generally result in a huge inferred
population size and confidence intervals excluding the
truth. Thus, data such as a collection of type specimens
for the HIV-1 serotypes will not give valid results in any
current genealogy sampler.

High-quality molecular data are required: genotyping
errors or incorrect sequence alignments can significantly
affect parameter estimation. Table 1 shows the types of
data accepted by current samplers.

When designing studies, researchers must choose how
much effort to put into collecting more individuals, geno-
typing more loci or sequencing longer stretches of DNA.
For the study of a single population, in the absence of
recombination, the statistical power of genealogy sampling
is optimized by sampling amodest number of haplotypes (as
few as 8) at as many unlinked loci as possible [29].
Sequences can be fairly short, although they should be long
enough to containmultiple polymorphic sites. Data require-
ments for multiple-population cases have not been deter-
mined, but the general principle of preferring multiple loci
should still hold. With recombination, however, long
sequences from a single locus can substitute for multiple
loci. For summary statistics, small numbers (3–10) of
very long sequences are optimal for recombination rate
inference [30]; this likely holds for genealogy samplers as
well. Detection of recombinations is easiest when there are
distinctive sequences on both sides of the breakpoint; long
sequences thus allow more recombinations to be detected.
88
Approaches to genealogy sampling
The quality of a genealogy is determined by the probability
that the given data would have evolved on that genealogy
under a specifiedmutational model. Genealogy inference is
challenging because the ‘search space’ is very large, and no
efficient algorithm is known that can guarantee finding the
best genealogy. Samplers are confronted with the need to
find a small number of needles (high-quality genealogies)
in an enormous haystack of low-quality genealogies.

Two approaches have been used to find high-quality
genealogies. The first has been called IS for ‘importance
sampling,’ although ‘independent sampling’ would be a
more descriptive name. This approach assumes a muta-
tional model under which no site has mutated more than
once. The simplifying effect of this infinite-sites model
allows genealogies which fit the data to be rapidly and
independently discovered. Unfortunately, less restrictive
mutational models are difficult to incorporate into an IS
sampler. Thus, IS algorithms are most applicable to low-
polymorphism data such as human nuclear single-nucleo-
tide polymorphisms (SNP).

The second approach begins with an arbitrary geneal-
ogy and makes small modifications, attempting to find
high-quality genealogies ‘nearby.’ As a result, successive
genealogies are correlated. This is a Markov chain Monte
Carlo (MCMC) algorithm, and these methods have there-
fore been referred to as MCMC methods. However, IS also
uses MCMC (in a substantially different way), so a clearer
term is CS for ‘correlated sampling.’ CS methods permit a
wider variety of mutational models, but have more diffi-
culty producing a thorough sample of high-quality genea-
logies, because the correlated search can fail to find distant
‘islands’ of good genealogies. They are well suited to highly
polymorphic data such as viral DNA sequences or human
microsatellites.



Table 2. Estimation capabilities of genealogy samplers

Inference capability BEAST GENETREE IM, IMa LAMARC MIGRATE-N

Q (population size �mutation rate) Yes Yes Yes Yes Yes

Migration rates Yes Yes Yes Yes

Population divergence times Yes

Multiple sampling times Yes

Recombination rate Yes

Growth rate General Exponential Exponential (IM only) Exponential

Dates of common ancestors Yes Yes

Mutation rates Yes

Dates of specific mutations Yes

Table 1. Commonly used coalescent genealogy samplers

Program Version reviewed Algorithm Data supported Combine loci with

different copy number?

Previous programs

superseded

BEAST [21] 1.4.7 CS (Bayesian) Nucleotide, amino acid,

codon, two-allele

No

GENETREE [22] 9.0 IS Nucleotide No ptreesim, timesim

IM, IMa [23–25] Version of 3/2/2008 CS (Bayesian) Nucleotide, microsatellite Yes MDIV

LAMARC [26] 2.1.2b CS (Bayesian or

likelihood)

Nucleotide, SNP,

microsatellite, K-allele

Yes COALESCE,

FLUCTUATE,

RECOMBINE

MIGRATE-N [27,28] 2.4 CS (Bayesian or

likelihood)

Nucleotide, SNP,

microsatellite, K-allele

Yes MIGRATE

Abbreviations: CS, correlated sampling; IS, independent sampling.

Table 3. Assumptions of genealogy samplers

Assumption Samplers not requiring

this assumption

Random sampling

No directional or balancing selection

Random mating within subpopulations

Constant mutation rate over time BEAST

No recombination within loci; free

recombination between loci

LAMARC

Stable subpopulation structure over time IM, IMa

Same copy number for all loci IM, IMa, LAMARC

All samples contemporaneous BEAST

Constant population size BEAST, IM, LAMARC

Population growth or shrinkage is

exponential

BEAST

Infinite-sites mutational model BEAST, IM, IMa, LAMARC,

MIGRATE-N
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Within the CS methods there is a further distinction
between likelihood-based and Bayesian approaches. In a
likelihood-based approach, genealogy sampling is guided
by the fit of the genealogy to the data, and by assumed
values, called ‘driving values,’ of the parameters to be
estimated. A collection of genealogies is accumulated,
and these are used to construct a likelihood surface, whose
peak will generate new driving values. This process is
repeated until the driving values stabilize. Sampling is
most effective when the driving values are similar to the
true underlying values, so only the final collection of
genealogies, which presumably had the best driving
values, is used to construct the final likelihood surface
and maximum-likelihood estimate. Confidence intervals
around the estimate are constructed based on the expected
shape of the likelihood surface. These confidence intervals
are somewhat controversial, as they involve assumptions
about the shape of the likelihood surface which are fully
correct only for implausibly large data sets.

In a Bayesian approach, the driving values are conti-
nually changed by sampling potential new driving values
from a prior distribution and evaluating how well they fit
the current genealogy. Rather than basing the final esti-
mate on collected genealogies, a Bayesian sampler tabu-
lates the driving values which it has visited and constructs
a smoothed histogram representing the posterior distri-
bution. The maximum of this distribution is the most
probable estimate, and the area under the curve is used
to construct support intervals. Bayesian estimation is also
controversial, because it depends on a prior distribution
which must often be chosen arbitrarily.

Two studies have compared likelihood and Bayesian
analysis of the same data by the same sampler. In data-
rich situations, the methods performed equally well [31];
with sparse data, Bayesian sampling performed better,
apparently because the prior distribution helped constrain
the search [32]. Poorly chosen priors can cause Bayesian
methods to fail, whereas poorly chosen driving values can
impair likelihood searches. Only two software packages
offer both sampling schemes; in other cases, the choice is
made implicitly when the software is chosen.

Available software
Several programs are available to perform coalescent
analysis. Their authors have generally avoided duplication
of effort, so that each program has clear areas of applica-
bility. Tables 1–3 show program capabilities. Below are
brief comments on each program’s particular strengths,
presented in alphabetical order.

BEAST

BEAST [21] estimates effective population size, mutation
rate and growth patterns for a single population. It has
three unique features: a flexible model of growth based on
the Bayesian skyline plot, allowing for arbitrary patterns
of historical population growth; a ‘relaxed clock’ muta-
tional model which allows the mutation rate to vary among
lineages; and accommodation of samples taken at multiple
89
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time points. BEAST is particularly useful when data from
multiple time points (distant enough in time to allow
measurable evolution between them) are available, as with
viruses or ancient DNA. Multiple time points allow the
mutation rate to be estimated separately from the popu-
lation size, whereas other programs are only able to esti-
mate the composite parameter Q, the product of effective
population size and mutation rate. Multiple time points
also allow greatly improved precision and detail in esti-
mation of the population growth rate. BEAST has been
used to trace cougar population demographics via molecu-
lar data from a fast-evolving feline virus [33], to infer that
Beringian bison had already begun to decline before
humans arrived in North America [11] and to date the
origin of an HIV-1 outbreak in a Libyan hospital [9].

GENETREE

GENETREE [22] estimates Q, migration rates and expo-
nential growth rates for multiple stable populations.
Unlike the other methods discussed here, it is an IS
sampler: it constructs independent genealogies rather
than repeatedly modifying a starting genealogy. This
requires it to assume an infinite-sites mutational model,
but renders it nearly immune to problems in which the
search fails to move well among genealogies. GENETREE
can provide estimates of the time back to the most recent
common ancestor of a population; uniquely, it also esti-
mates dates of specific mutations. It has been used to show
that the common ancestor of human Y chromosomes was
unexpectedly recent, perhaps due to a selective sweep [34].

IM and IMa

IM and IMa [23–25] consider cases in which two popu-
lations have recently diverged from a common ancestor.
They estimate Q for each population and for the common
ancestor, as well as the divergence time, bidirectional
migration rates among the daughter populations and (in
IM only) growth rates for the daughters. They are particu-
larly well suited for analysis of young populations and for
distinguishing gene flow from retention of ancestral poly-
morphism. IMa, the more recent program, uses an
improved search algorithm, offers likelihood ratio tests
to decide among different demographic models and pro-
vides more information about the joint distribution of
parameters than IM; however, it does not yet duplicate
all of the features of IM. IM has been used to show that loci
near the centromere show reduced gene flow compared to
telomeric loci in a rabbit hybrid zone [10].

LAMARC

LAMARC [26] considers cases in which multiple popu-
lations have had stable population sizes and migration
rates for a long time, and allows each population to have a
separate rate of exponential growth or shrinkage. There is
no theoretical limit on the number of populations, but in
practice, cases with more than three or four populations
take large amounts of computer time and demand exten-
sive data for success. LAMARC allows genetic recombina-
tion within sequences and estimates an overall
recombination rate. This allows use of long sequences from
recombining areas of the genome, both for estimation of
90
recombination rate and for nonconfounded estimation of
other parameters. LAMARC can also perform fine-scale
linkage disequilibrium mapping, relating phenotypic data
to genetic variation. LAMARC has been used to show that
the long-term effective population size of gray whales was
substantially larger than estimated from historical whal-
ing records, based on a mixed sample of nuclear and
mitochondrial loci [35].

MIGRATE-N

MIGRATE-N [27,28] considers multiple populations using
a stable-population model similar to that in LAMARC. It
estimates Q for each population and migration rates in
each direction between each pair of populations. As with
LAMARC, there is no set limit on the number of popu-
lations. MIGRATE-N offers detailed tests based on like-
lihood ratios and the Akaike information criterion (AIC) for
deciding among models, such as a model of symmetrical
versus unconstrained migration rates. It can also be run in
parallel on multiple computers for faster analysis.
MIGRATE-N has been used to show that the effective
population size of red drum, a long-lived ocean fish, is
three orders of magnitude smaller than its census size,
suggesting highly unequal reproductive success [36].

These programs do not yet cover the full range of
situations encountered by biologists. In particular, combi-
nations such as multiple-time point sampling with recom-
bination or population subdivision, or population
divergence with recombination, are not yet possible, and
none of the programs can estimate the strength of natural
selection.

Frustratingly, some methods mentioned in the litera-
ture are rendered nearly unusable by lack of publicly
available software, for example certain coalescent-based
estimators of natural selection [6], population subdivision
with multiple-time point data [37] and migration using
isolation by distance (described in Ref. [38]).

Guidance and caveats on the use of genealogy samplers
Each genealogy-sampler program uses specific population
models, and the biologist must carefully consider the
assumptions of each model when deciding which, if any,
program is appropriate. For example, LAMARC and
MIGRATE-N assume the dynamics of each population
have been stable for �4N generations; when recent popu-
lation divergence is likely, IM or IMa aremore appropriate.
Table 3 summarizes major assumptions of the programs. If
these assumptions are violated, the results can be mis-
leading. Before using any genealogy sampler, the
researcher should carefully examine its documentation
to understand the models it uses.

The complexity of the chosen population model con-
sidered must be weighed against the amount of data
available. Attempts to estimate the 20 possible pairwise
migration rates among five populations using data from a
single locus will probably fail. Restricting the hypothesis –

perhaps by assuming thatmigration is symmetrical or that
certain migration routes need not be considered – will
improve statistical power, but if those assumptions are
incorrect, the results of the analysis will be as well. Pre-
analysis of the data can help prevent the use of inappropri-
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ate population models. For example, STRUCTURE [39]
can be used to determine whether there is sufficient evi-
dence for geographic structuring to support a sampler-
based subpopulation analysis. MODELTEST [40] can be
used to determine the most appropriate mutation model.

Use of alternativemethods can strengthen the results of
a coalescent analysis. For example, a study [36] concluded
that the effective population size of an ocean fish is orders
of magnitude less than its census size by pairing a
MIGRATE-N analysis, measuring long-term Ne, with a
short-term analysis based upon allele frequency fluctu-
ation over several years of sampling. The agreement be-
tween these unrelated methods greatly strengthened the
conclusions. By contrast, agreement between multiple
genealogy samplers does not strongly corroborate their
results, because the underlying approaches and assump-
tions of the samplers are too similar.

Genealogy-sampling algorithms, when used properly,
vary from slow to excruciatingly slow. It is wise to budget
several months for the statistical analysis phase of a
study after data collection is complete. Rushed analysis
will lead to weak results. A small pilot analysis can allow
the researcher to find suitable run conditions for a
complete analysis without using excessive computer
time. Such a pilot typically examines a single locus
and a small subset of samples (8–10 randomly chosen
haplotypes). A short run will then give valuable hints
about how well the program performs and how long a full
analysis will take.

How should sampler results be validated?
All of the genealogy samplers described in this review rely
on collecting large samples of genealogies which collec-
tively represent the genealogical information present in
the data. All, therefore, are vulnerable to too-short runs or
poor choices of run conditions. These can lead to too-small
or unrepresentative samples of genealogies, which in turn
can lead to actively misleading results and especially to
overly narrow inferred confidence intervals. To get reliable
results, the program user must be prepared to learn about
the options and functionality of the program, and must
make multiple runs to fine-tune the options.

Four basic approaches to validation are known. For all
samplers, repeating the run with a different random num-
ber seed will reveal whether the results are stable. It is
important to note that for some data sets, the point esti-
mates of parameters such as growth rate can vary sub-
stantially from run to run simply because there is little
information present. However, such results should be
accompanied by wide, overlapping confidence intervals
among the multiple runs. If the confidence intervals for
multiple runs exclude one another, the runs are too short.
This approach can be extended by varying the starting
parameter values and starting genealogy (where possible).
Small variations in the prior of a Bayesian analysis can
also be tested to see whether they lead to large differences
in the result; a well-behaved Bayesian run should not be
highly sensitive to small variations in its prior.

For Bayesian CS samplers in particular, two useful
validation capabilities are provided by the TRACER pro-
gram [41], which can be used in conjunction with BEAST,
LAMARC and MIGRATE-N. IM and IMa provide TRA-
CER-like capabilities internally.

TRACER calculates the effective sample size (ESS)
statistic, which gives a thumbnail diagnosis of too-short
runs by revealing how much independent information is
present in the sampled parameter values. High ESS values
unfortunately do not prove that a program run was ade-
quately long, but values below 200 are clear evidence that
it was too short.

TRACER can also plot the changes in parameter values
during the length of a run. Visual inspection of these
‘traces’ can provide important clues about run adequacy.
After an initial burn-in period, traces should vary stochas-
tically around a stable value. Long-range trends, wild
oscillation or values which do not move from their starting
points are clear indications of a too-short or otherwise
flawed analysis.

A final approach to validation is to assess whether the
whole genealogy structure has been thoroughly reconsid-
ered, or whether there are groups of samples whose
relationships have remained stuck in their initial configur-
ation. For cases without recombination, this can be done by
the AWTY program [42]. BEAST, LAMARC and
MIGRATE-N produce output suitable for AWTY. Unfortu-
nately, no equivalent tool exists for genealogies with
recombination.

When a sampler run shows signs of inadequacy, it can be
run longer. Alternatively, a technique called Metropolis-
coupled Markov chain Monte Carlo, informally referred to
as ‘heating,’ will often improve the search performance of
CS genealogy samplers. It is offered by all of the CS
samplers described here, and should be tried whenever
multiple runs produce contradictory results, or ESS values
or TRACER graphs are persistently unsatisfactory. Heat-
ing can be thought of as sending ‘scouts’ to explore distant
regions of the space of possible genealogies. A search with
three scouts will triple the run time, but is usually more
effective than simply running the program three times as
long. Heating is not applicable to IS samplers, as they are
not limited to searching in the vicinity of their current
genealogy. A poorly performing IS sampler should simply
be run longer.

Persistent failure of a sampler to give stable results
should trigger reconsideration of the study design. Are the
data really suitable for this type of analysis? Are the
assumptions of the program met? Is the amount of data
adequate for the complexity of the model in use?

In addition to giving usage instructions, the documen-
tation for each program generally provides guidance on
how to interpret the results of the program. Internet
discussion groups can be another source of useful infor-
mation. Program authors and maintainers usually wel-
come questions about their software, and are the ultimate
direct source for guidance on its use.

Conclusions
Correctly used, genealogy samplers can provide powerful
and detailed insights into population history. They can
help disentangle multiple evolutionary forces acting on a
population, including gene flow, population growth and
population divergence. Importantly, they also offer infor-
91
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mation about the degree of statistical support for their
inferences.

However, genealogy samplers cannot be treated as
‘black boxes.’ A researcher planning a genealogy-sampler
analysis will need a good understanding of the software
and its underlyingmodel, and also a good understanding of
the study organism and its life history. Knowledge of the
software is essential in choosing appropriate data,
monitoring adequacy of the runs and interpreting the
results. Knowledge of the biological system is essential
in choosing an appropriate population model and under-
standing how differences between the real population and
its simplified representation can affect the results of the
analysis. For example, knowing the generation time of the
study organism and the geological history of its habitat can
suggest whether it likely has long-term stable population
structure (suitable for LAMARC orMIGRATE-N) or would
better be analyzed under a recent-divergence model with
IM or IMa.

Steadily improving technology is allowing biologists to
collect and compare more data frommore complex systems
than ever before. Computing resources, likewise, continue
to improve in speed and availability. As coalescent geneal-
ogy samplers become easier and faster to use, the research
community at large will increasingly expect these tools to
be used to supplement or supersede summary-statistic
calculations. These developments are spurring program
authors to refine and extend their programs. As exper-
imental biological questions continue to gain in complexity
and sophistication, so too, by necessity, will the compu-
tational tools to answer them.
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