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The effective population size (Ne) is an important parameter in ecology, evolutionary biology and
conservation biology. It is, however, notoriously difficult to estimate, mainly because of the highly
stochastic nature of the processes of inbreeding and genetic drift for which Ne is usually defined and
measured, and because of the many factors (such as time and spatial scales, systematic forces)
confounding such processes. Many methods have been developed in the past three decades to
estimate the current, past and ancient effective population sizes using different information extracted
from some genetic markers in a sample of individuals. This paper reviews the methodologies
proposed for estimating Ne from genetic data using information on heterozygosity excess, linkage
disequilibrium, temporal changes in allele frequency, and pattern and amount of genetic variation
within and between populations. For each methodology, I describe mainly the logic and genetic
model on which it is based, the data required and information used, the interpretation of the estimate
obtained, some results from applications to simulated or empirical datasets and future developments
that are needed.
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1. INTRODUCTION
When the systematic forces of mutation, selection and

migration are absent, the genetic properties (such as

heterozygosity, number of alleles, allele and genotype

frequencies at a locus) of an infinitely large population

will remain constant over time. In contrast, such

properties of a population with a finite size will change

from generation to generation, resulting inherently

from the stochastic process of sampling a finite number

of gametes during reproduction and survival. The

strength of the stochastic process in and thus the extent

of the change in genetic properties of a population

depend on its effective size, a concept introduced by

Wright (1931) and developed by many others, mainly

Crow & Kimura (1970). The stochastic changes of the

genetic properties are slower in populations with larger

effective sizes than those with smaller effective sizes.

The effective population size (Ne) is defined as the

size of an idealized Wright–Fisher population (Fisher

1930; Wright 1931), which would give the same value

of some specified genetic property as in the population

in question (Crow & Kimura 1970). Depending on the

genetic property of interest, therefore, different con-

cepts of Ne have been proposed such as the inbreeding

effective size, variance effective size, eigenvalue effective

size, mutation effective size and coalescent effective size

(Ewens 1982; Gregorious 1991; Caballero 1994;

Whitlock & Barton 1997; Charlesworth et al. 2003).
The most widely used concepts are inbreeding effective

size (NeI), which predicts the rate of decrease in
ntribution of 16 to a Theme Issue ‘Population genetics,
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heterozygosity or the rate of increase in homozygosity
(inbreeding), and variance effective size (NeV), which
measures the variance of change in gene frequency
resulting from one generation of genetic sampling. In
some complex situations where the demography of a
population changes over time or an equilibrium state
has not been attained, the two effective sizes at any
transitory time can be dramatically different (e.g.
Chesser et al. 1993; Wang 1997a,b). However, the
two effective sizes are the same for equilibrium
populations, or are asymptotically the same for non-
equilibrium populations when the long-term (har-
monic) mean effective sizes are used (Pollak 2002). In
this review, I will not distinguish inbreeding and
variance effective sizes and will refer to them collec-
tively as effective size (Ne).

There has been tremendous interest in knowing the
effective size of a natural or artificial population in
many study areas of population genetics, quantitative
genetics, evolution and conservation biology. Effective
size, interacting with systematic forces such as
mutation, selection, migration and recombination,
determines the amount and distribution of genetic
variation present in a population. From a retrospective
point of view, therefore, Ne helps in explaining the
observed extent and pattern of genetic variation in a
population, in inferring the evolutionary mechanisms
involved in shaping the variation in natural popu-
lations, and in understanding the evolution of sex and
recombination (Barton & Charlesworth 1998). From a
prospective point of view, Ne helps to predict the loss
and distribution of neutral genetic variation, the
fixation probabilities of beneficial or deleterious alleles
(Robertson 1961), and the fitness and survival of a
small population (Lynch et al. 1995). Therefore,
knowledge of Ne facilitates the designs of efficient
q 2005 The Royal Society
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artificial selection schemes in plant and animal breed-
ing (e.g. Caballero et al. 1991) and the effective
management of populations of endangered species
(Frankham 1995; Wang 2004).

In spite of our great interest in this important
parameter, Ne is notoriously difficult to estimate. As a
result, we know very little about the effective sizes of
natural populations. A real population may depart from
the idealized Wright–Fisher population in many
different ways, and as a result, its Ne can be very
different from the census size. In addition to the census
size, many other demographic and genetic parameters,
such as sex ratio, variance of reproductive success
among individuals, mating system and mode of
inheritance, affect the Ne of a population. The effects
of these parameters on Ne have been formulated, and
have been reviewed by Caballero (1994) and Wang &
Caballero (1999). In principle, these formulations can
be used to estimate the Ne of a population if the
relevant demographic parameters can be inferred from
the population in question. Unfortunately, however,
parameters such as the variance of reproductive success
are extremely difficult to estimate for natural popu-
lations. Pedigree information can also be used to
estimate Ne, but again is rarely available from most
natural populations. In the unusual case of a well -
studied population so that either of these two
approaches is applicable, the estimated effective size
is the short-term or current value and has thus limited
value in explaining the current amount and pattern of
genetic variation of the population, which are the result
of genetic drift, mutation and other evolutionary forces
over a much longer time-scale.

Currently, the most widely used approaches to
estimating the effective sizes of natural populations
are those based on the genetic properties of the
populations as revealed by various genetic markers.
The effective size of a population affects both the
amount and distribution over time and over space
(within and between individuals and subpopulations)
of genetic variation, which can be quantified using
suitable genetic markers and used to infer the effective
population size. Owing to the rapid development in
molecular biology in recent years, a variety of markers
and DNA sequences can be determined easily and
cheaply for a sample of individuals from various
species. Under an appropriate genetic model, statistical
methods can be developed to extract information from
such marker data to estimate effective size alone or
together with other interesting parameters, such as
migration rate. This paper reviews the methodologies
proposed to estimateNe from genetic data in the last 30
years, with emphasis on those not touched upon or
covered only briefly by two previous reviews (Schwartz
et al. 1999; Beaumont 2003a). For each methodology, I
will describe mainly the logic and genetic model on
which it is based, the data required and information
used, the interpretation of the estimate obtained, some
results from applications to empirical datasets and
future developments that are needed. The technical
details of the implementation and computation of the
methodologies are largely omitted, because they are
sometimes quite complicated and have been described
in the original papers cited in this review. Because of the
Phil. Trans. R. Soc. B (2005)
large body of literature in this fast growing research
area, some relevant papers may inevitably be over-
looked by the review. However, I hope the review
captures the main classes of Ne estimation methods
available, and provides useful information for empiri-
cists in understanding, choosing and applying these
methods to their data analysis and for theoreticians in
improving current and developing new methods.
2. METHODOLOGIES FOR ESTIMATING
EFFECTIVE SIZES
(a) Current Ne estimated from heterozygote

excess

In the absence of selection, mutation and migration, an
infinitely large population with discrete generations will
attain Hardy–Weinberg equilibrium by one generation
of random mating. At the equilibrium, gene frequen-
cies and genotype frequencies are constant from
generation to generation, and there is a simple
relationship between genotype frequencies and gene
frequencies called the Hardy–Weinberg law. For a finite
population, however, the Hardy–Weinberg law is
violated because genetic drift generates both chance
deviations of genotype frequencies from the expected
Hardy–Weinberg proportions (HWP) and a systematic
bias due to the discreteness of the possible numbers of
different genotypes (Kimura & Crow 1963). The bias is
towards a heterozygote excess and homozygote
deficiency compared with HWP, by an amount of

ao ZK
1

2N K1
; (2.1)

in a Wright–Fisher population with size N (Crow &
Kimura 1970). This bias can be regarded as due to the
statistical sampling of a finite number of offspring, and
applies to a random sample of offspring when N refers
to the sample size.

In a finite diploid population with separate sexes,
there are additional chance deviations of genotype
frequencies from the expected HWP and a systematic
heterozygote excess in the offspring, caused by the
genetic drift that occurred in the parental generation.
This systematic bias can be regarded as being caused by
the process of genetic sampling of finite numbers of
male and female parents, resulting in a stochastic
difference in gene frequency between male and female
parents. Robertson (1965) showed that in an idealized
population but with separate sexes with Nm male and
Nf female parents, the heterozygote excess in the
progeny is

ap ZK
1

8Nm

K
1

8Nf

ZK
1

2Ne

; (2.2)

whereNeZ4NmNf =ðNmCNf Þ is the effective size of the
parental population (Caballero 1994). Note that ap is
independent of ao in a population with separate sexes.
The former is caused by the drift in the parental
population and is thus determined by the Ne of the
parental population, while the latter is caused by the
drift (or sampling) in offspring and is thus determined
by the Ne (or sample size) of offspring.

Equations (2.1) and (2.2) suggest an estimator of
effective size using the heterozygote excess observed at
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some marker loci from a single sample. The estimator
derived by Pudovkin et al. (1996) for a single biallelic
locus is

�N e Z 1=2DC1=2ðDC1Þ; (2.3)

where DZHexp=ðHexpKHobsÞ, HexpZ2p(1Kp) is the
expected heterozygosity calculated from the gene
frequency ( p) observed in a sample of N offspring,
and Hobs is the observed heterozygosity in the sample.
For mutiallelic loci, D is calculated as the average
across alleles per locus, and across loci (Pudovkin et al.
1996; Luikart & Cornuet 1999).

Computer simulation studies indicate that this
estimator is little biased, but has very low precision
(Pudovkin et al. 1996; Luikart & Cornuet 1999).
Applying estimator (2.3) to 10 datasets with known
small parental population sizes, Luikart & Cornuet
(1999) obtained five Ne estimates that are infinity.
Until now, there have been few applications of this
estimator to the analysis of real datasets. Because the
average heterozygosity excess is reciprocally pro-
portional to Ne, the precision of estimator (2.3)
decreases with an increasing true effective size. The
estimator is useful only for very small random mating
populations when many markers are genotyped from a
large sample.

The estimation ofNe based on heterozygosity excess
can be improved in several aspects. First, more general
equations for heterozygosity excess at diploid auto-
somal loci and haplodiploid loci (or species) owing to
sampling/drift in parents (ap) and offspring (ao) were
derived for populations with an arbitrary distribution of
reproductive success (Wang 1996). These formulae
yield a general and simple relationship between Ne and
heterozygosity excess when the covariance between the
numbers of male and female offspring per parent is
zero, which seems to be plausible for most natural
populations. A more general estimator should be
developed based on these formulae, noting that the
heterozygosity excess observed in a sample is parti-
tioned into ao and ap owing to statistical sampling and
drift, respectively. Second, the current estimator makes
no weighting among the D values calculated from
different alleles and loci, resulting in a potential loss of
precision. More appropriately, weights should be
applied to different alleles and loci depending on their
sampling variances determined by allele frequencies
and sample sizes. Third, genetic drift generates not
only a heterozygosity excess on average, but also chance
deviations of genotype frequencies from the expected
HWP. The variance of the deviations should have a
simple relationship with Ne and thus can be used for
estimating Ne as well. Using information on both the
mean and variance of the deviations may potentially
improve the precision of Ne estimates substantially.

The assumptions of no mutation and no selection in
the heterozygosity excess method are valid in general,
because only one generation is concerned and markers
are ‘neutral’. The assumption of a single isolated
population without immigration is violated in some
natural populations. When immigration exists, but is
ignored, Ne would be underestimated because in
addition to drift, immigration also produces
Phil. Trans. R. Soc. B (2005)
heterozygote excess. The strongest assumption made
by the heterozygosity excess method seems to be
random mating. When mating is not at random, then
the heterozygosity excess generated by drift can easily
be overwhelmed by that generated by non-random
mating. Although the heterozygosity excess has been
quantified in a finite population with non-random
mating such as partial selfing or full-sib mating (Wang
1996) and can be used to infer Ne, the proportions
of selfing or full-sib mating must be known a priori.
In reality, such proportions are at best estimated and
their sampling errors could further affect the precision
and accuracy of Ne estimated from heterozygosity
excess.
(b) Short- or long-term Ne estimated from

linkage disequilibrium

Linkage disequilibrium (LD) is the non-random
association between alleles at different loci in gametes.
It can be produced in principle by a number of factors
such as migration, direct or indirect (e.g. hitchhiking)
selection, and genetic drift in finite populations. For
neutral loci unlinked with selected loci in an isolated
population with random mating, LD would come
exclusively from genetic drift and can be used to
estimate Ne (Hill 1981).

TheLD for alleles A andB at two loci is defined as the
difference between the frequency of gametes (chromo-
somes) bearing both alleles ( pAB) and the product of
the allele frequencies ( pApB), DABZpABKpApB. The
correlation between pA and pB is rABZDAB=ð pAð1KpAÞ
pBð1KpBÞÞ

1=2 (Hill & Robertson 1968). If the two loci
are neutral and the population has been in isolation with
a constant effective size of Ne for sufficiently long time,
then rAB will be drawn from an equilibrium distribution
determined by Ne and the recombination rate between
loci, c. At this equilibrium, we have E(rAB)Z0 and

V ðrABÞZEðr2ABÞz
ð1KcÞ2 Cc2

2Necð2KcÞ
; (2.4)

approximately (Weir & Hill 1980). When a sample of n
chromosomes or individuals are used to estimate allele
frequencies and LD, an additional part of V(rAB) owing
to sampling, 1/n, should also be included. Hill (1974)
showed that the contribution from sampling is the same
whether n chromosomes are extracted and identified or
n diploid individuals with unknown linkage phase are
analysed.

For a number of L loci, there are kZL(LK1)/2 pairs
of loci. Denote the correlation, recombination fraction
and sample size for the ith pair as ri, ci, and ni (iZ1,
2,.,k). Hill (1981) derived a multilocus Ne estimator
using the formulation for a single locus above and an
approximate variance–covariance matrix of ri

2among
pairs of loci,

1

�N e

Z

Pk
iZ1 giðr

2
i K1=niÞ=ðgi= �N e C1=niÞ

2Pk
iZ1 1=ð1= �N e C1=ðginiÞÞ

2
; (2.5)

where giZ ðð1KciÞ
2Cc2i Þ=ð2cið2KciÞÞ, and ri can

be estimated by a variety of methods (Weir 1979).
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The variance of the estimate is

V ð1= �N eÞZ 2=
Xk
iZ1

ð1= �N e C1=ðginiÞÞ
K2: (2.6)

An analysis based on equation (2.6) showed that
precise estimates of Ne can be obtained only when the
sample size n is large relative to the ratio Ne/gw4Nec
(Hill 1981) and/or k is large.

Hill (1981) applied his method to the analysis of two
datasets on Drosophila melanogaster. The first is a
sample of 198 flies collected from a wild population
in North Carolina (Langley et al. 1977). For each
sampled individual, the second and third chromosomes
were extracted and analysed for six and five enzyme
loci, respectively. The estimate of Ne from equation
(2.5) was negative, indicating that the observed LD is
less than that expected from sampling alone and thus
the best estimate of Ne is infinitely large. The second
dataset is from the Maine cage population of Langley
et al. (1978). Three and four enzyme loci on the second
and third chromosomes, respectively, were analysed for
a sample of 635 to 756 flies, depending on the pair of
loci. Applying equations (2.5) and (2.6) yields a Ne

estimate of 363 with a standard deviation of 170. The
Ne estimate of 363 is below the census size of this cage
population, 1000. Applying the LD estimator of Ne to
several other empirical datasets yielded plausible
results (e.g. Bartley et al. 1992; Ardren & Kapuscinski
2003).

Several issues associated with the LD estimator of
Ne need further consideration. First, the estimator was
derived using a number of approximations. For
example, equation (2.4) is not a good approximation
when gene frequencies are very close to zero or one
(Hill 1981; Hudson 1985). A simulation study is
necessary to investigate how reliable these approxi-
mations are, whether the estimator is biased or not, and
how accurate the estimate of variance as formulated in
equation (2.6) is. Second, the estimator assumed an
isolated equilibrium population with a constant Ne.
The assumption may not be tenable for some natural
populations, especially in the long run. Hill (1981)
showed that more information comes from pairs of
more tightly linked loci, and therefore one may choose
closely linked markers to better estimate Ne from LD.
However, the tighter the linkage between markers, the
longer the time it requires the LD to reach an
equilibrium distribution. In other words, the LD for
more tightly linked markers observed in the current
population would reflect (remember) a longer period of
the past demographic history of the population, and
thus is more probably affected by factors such as
founder event, migration and fluctuation in population
size (Hill 1981). On the positive side, one may estimate
Ne separately from loosely linked loci and from tightly
linked loci to obtain some information on the demo-
graphic history of the population (Hill 1981). On the
negative side, it is difficult to interpret the exact
meaning of the Ne estimate obtained. For example, a
smaller estimate of Ne from tightly linked markers than
that from loosely linked markers may be a result of a
founder event, a bottleneck in population size in the
remote past, a gradual growth in population size,
Phil. Trans. R. Soc. B (2005)
an immigration or a hybridization event in the past or
any combination of these events. Third, the LD
estimator uses information on pairs of loci, and
additional information could be exploited from groups
of three, four or more loci. Although the LD among
three or more loci generated by drift in a finite random
mating population was investigated by Hill (1976), the
results are less precise than those for pairs of loci and
thus are considered of no practical value in estimating
Ne (Hill 1981). Fourth, the estimator was derived
assuming biallelic loci. At present, highly polymorphic
markers that may have scores of alleles per locus, such
as microsatellites, are widely available. One possible
way to use multiallelic markers in the LD estimator is to
consider, in turn, each allele and bin all the other alleles
at a locus, as suggested by Waples (1991). This may be
plausible for unlinked loci. How this approximate
treatment affects the accuracy and precision of the LD
estimator needs further investigation.

Recently, Hayes et al. (2003) developed a method to
use the LD information from multiple densely spaced
markers on a chromosome segment for inferring theNe

at different time points in the past. They proposed a
novel multilocus measure of LD, the chromosome
segment homozygosity (CSH), which is defined as the
probability that two homologous chromosome seg-
ments drawn at random from the population are from a
common ancestor without intervening recombination.
The CSH cannot be observed directly from marker
data but can be inferred frommarker haplotype (for the
segment) frequencies and marker frequencies, both
being observable from a sample of individuals. The
expectation of CSH in a population with a constant Ne

is the same as that of r2 in equation (2.4), which is
approximately 1/(4Ne cC1) for small values of c, the
recombination fraction or the length of the chromo-
some segment in Morgans (Hayes et al. 2003). When
Ne changes linearly over time, then the expectation of
CSH is ca. 1/(4Ne,t cC1), where Ne,t is the effective
population size at tZ1/2c generations ago in the past
(Hayes et al. 2003). Therefore, CSHs for chromosome
segments of different lengths (c) can be used to estimate
the Nes at different generations in the past. Applying
this method to a human haplotype dataset including 24
single nucleotide polymorphisms (SNPs) and 2 micro-
satellites in a 1 cM region, Hayes et al. obtained an
estimate ofNe of about 5000 at about 2000 generations
ago, using short lengths of haplotypes, and of about
15 000 at about 182 generations ago, using long lengths
of haplotypes. The result suggests an exponential
growth of the human population in the past, which
seems to be plausible. Hayes et al. also applied their
method to a dataset comprising 16 microsatellites in a
65 cM segment on chromosome 20, sampled from 264
Australian Holstein–Friesian cows. The estimated Nes
are 250 and 1000 using CSH at large and small lengths,
respectively. This suggests a decline in Ne for the
population, which again seems to be compatible with
the known breeding history of this breed.

There is still room to refine the CSH method. For
example, the recent Ne using large chromosome
segments tends to be overestimated, suggesting that
equation (2.4) may not be a good approximation for
larger segments in estimating the Ne in the more recent

http://rstb.royalsocietypublishing.org/


Estimators of effective population size J. Wang 1399

 on March 4, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
past. Further, sampling effects due to small sample
sizes need to be accounted for; otherwise, like LD for a
pair of loci, the effect of Ne,t on CSH will probably be
swamped by sampling effects. Mutations, which are
ignored by Hayes et al. (2003), may not be a problem
for estimating the recent Ne using large chromosome
segments, but could have a measurable effect on
estimating the Ne hundreds or thousands generations
into the past using very small segments.

The above LD methods using either pairs of loci or
segments of chromosomes assume an isolated popu-
lation without immigration. The assumption may not
be tenable for some natural populations, especially over
long time-intervals. Immigration could lead to under-
estimation of Ne from the LD methods, because the
LD generated by migration is falsely regarded as that
produced by drift. Vitalis & Couvet (2001) proposed an
estimator that can disentangle migration from drift as
sources of LD and thus can estimate both simul-
taneously. Under the infinite island model (Wright
1951), the Fst for a focal population can be estimated
from single locus genotype frequencies and gene
frequencies observed from a sample. At equilibrium
under migration and drift, the expected value of Fst is
ca 1/(1C4Nem), where Ne is the effective size and m is
the immigration rate for the focal population. To
quantify the non-random association of alleles between
a pair of loci, Vitalis & Couvet (2001) defined the
parameter of ‘within-subpopulation identity disequili-
brium’ as the excess of two-locus identity probabilities
over the product of single-locus identity probabilities
among individuals within subpopulations. This par-
ameter (denoted by h0

s), when standardized in a way
similar to rAB in equation (2.4), can be estimated from
two-locus genotype frequencies and gene frequencies
observed in a sample. The expected value of �h 0

s is a
known function of one- and two-locus identity prob-
abilities, which, in turn, are determined by parameters
m and Ne (Vitalis & Couvet 2001). From these known
relations and the estimated values of Fst and h0

s, one can
obtain separate estimates of m and Ne. Simulations
show that in general the estimator could return
reasonably good estimates of m and Ne when 50
individuals are sampled and 8 or more microsatellites
are genotyped, if Ne is not large (!100).

The simulations also indicate that Ne is generally
underestimated, especially when mutation is assumed
to follow the k-allele model (Vitalis & Couvet 2001).
The method relies on the infinite island model under
drift and migration equilibrium, which requires a
constant population size and migration rate over
many generations. When Ne is large, then the one-
and two-locus identity disequilibria generated by drift
would be too small to allow an accurate estimate of Ne.
In such a case, use of closely linked markers can
increase the power, but a much larger number of
generations would be necessary for the equilibrium to
be reached.

(c) Short-term Ne estimated from temporal

samples

In general, the allele frequency of a population changes
over time owing to either the systematic forces of
mutation, selection and migration or the stochastic
Phil. Trans. R. Soc. B (2005)
force of genetic drift, or both. When all the systematic
forces are excluded, the observed change in allele
frequency comes solely from genetic drift and can thus
be used to infer how strong the drift is or how large the
Ne of the population is. The so-called ‘temporal
methods’ for estimating Ne are based on this logic,
and were proposed by Krimbas & Tsakas (1971) and
subsequently developed by many others (e.g. Nei &
Tajima 1981; Pollak 1983; Waples 1989).

The basic protocol of the approach is as follows.
Suppose we have an isolated random mating popu-
lation with discrete generations and we wish to measure
its (average) Ne during a certain period of time. Two
samples of individuals can be taken at random from the
population, the first sample at the beginning (gener-
ation 0) and the second sample at the end (generation t)
of the period of time. The two samples are then
genotyped for a number of neutral markers to estimate
allele frequencies, which are used to estimate the
standardized variance in the temporal changes of allele
frequency, F. The estimated F, �F , is thus contributed
by both sampling and genetic drift. When the sampling
effect is accounted for, �F reflects the strength of genetic
drift and, in expectation, is reciprocally proportional to
Ne. An estimate of Ne can then be obtained from �F .

In the above protocol, the main difficulty comes
from estimating F and finding its expectation. Several
estimators of F were available, among which a widely
used one was developed by Nei & Tajima (1981),

�F Z
1

k

Xk
iZ1

ðxi KyiÞ
2

ðxi CyiÞ=2Kxiyi
; (2.7)

where xi and yi are the observed frequencies of allele i at
a locus with k alleles in the first and second samples,
respectively. For multiple loci, �F is calculated as the
average of single locus estimates. The expectation of �F
depends on the sampling scheme that is used to sample
genes from the population. Nei & Tajima (1981)
distinguished two sampling schemes.

Scheme 1 assumes that the population’s census size
(when samples are taken), N, is equal to its Ne, that
allele frequencies are determined by sampling Sj ( jZ0
and t for the first and second sample, respectively)
individuals out of N, and that sampling at any
generation does not affect population allele frequencies
and Ne. The latter assumption holds when individuals
are sampled after reproduction or when they are
returned to the population after examination of
genotypes. The exact expectation of �F under this
sampling scheme is difficult to obtain, but an approxi-
mation was derived by Nei & Tajima as
Eð �F ÞZ1=2S0C1=2StC ðtK2Þ=2Ne. Using �F as its
expectation, we can therefore obtain

�N e Z
tK2

2 �F K 1
2S0

K 1
2St

� � : (2.8)

Scheme 2 assumes that N (when samples are taken)
is much larger than Ne, and that individuals for
determining allele frequencies and those for generating
the next generation are sampled separately from
the population of N individuals. Under this samp-
ling scheme, Eð �F ÞZ1=2S0C1=2StC ðtK2Ne=NÞ=2Ne
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approximately (Nei & Tajima 1981). When N[Ne,
the estimator of Ne is

�N e Z
t

2 �F K 1
2S0

K 1
2St

� � : (2.9)

The uncertainty of �N e can be assessed from that of
�F . It was shown that �F =Eð �F Þ follows roughly the c2

distribution (Lewontin & Krakauer 1973; Nei &
Tajima 1981). When n loci are used in the
estimation, �F =Eð �F Þ follows roughly a c2 distribution
with kI degree of freedom, where kIZ

Pn
iZ1 kiKn

and ki is the number of alleles at locus i. The �F

values that give the 2.5 and 97.5% cumulative
probabilities can be obtained from this c2 distri-
bution, which are then used to determine the 95%
confidence limits of Ne. In practice, the confidence
interval determined by this procedure is a slightly
overestimate.

Recently, probability methods have been developed
to improve the estimates of Ne from temporal samples.
Williamson & Slatkin (1999) proposed a likelihood
framework to estimate Ne and its change over time,
using two or more samples of biallelic markers. The
work was extended by Anderson et al. (2000), who
described a Monte Carlo approach to computing the
likelihood with data on multiallelic markers. Their
algorithm, using importance sampling, is highly com-
putationally demanding. Although it produced reason-
ably good estimates of Ne with small Monte Carlo
variance when applied to small problems, it failed to
converge when applied to data involving loci with many
alleles (Anderson et al. 2000). Wang (2001) proposed a
method to calculate the likelihood for multiallelic
markers, which is computationally very efficient and
applies to any number of alleles per locus. This method
transforms a k-allele locus into k biallelic ‘loci’, each
having one of the k alleles with all the other alleles
pooled. The overall log-likelihood is approximated by
the sum of the log-likelihoods across the biallelic ‘loci’
multiplied by the factor of (kK1)/k to account for the
dependence of the k ‘loci’. This treatment reduces to
the exact likelihood given by Williamson & Slatkin
when markers are biallelic (kZ2), and yields indis-
tinguishable results for �N e in terms of accuracy and
precision from those from the exact likelihood method
when markers are tri-allelic. Note that the strength of
dependence of allele frequencies at a locus decreases
with k, and therefore kZ2 and 3 are the worst possible
cases for this approximate treatment of multiallelic loci.

The changes in allele frequency in a population can
be modelled by a forward probabilistic approach, as
adopted by the likelihood methods above, or by a
backward coalescent approach (Berthier et al. 2002;
Beaumont 2003b; Laval et al. 2003). These coalescent-
based methods are Bayesian, usually resorting to
Markov chain Monte Carlo (MCMC) to approximate
the posterior distribution of Ne. One potential advan-
tage of the coalescent approach is its computational
efficiency when sample size is small butNe is very large.

The probabilistic approaches have several advan-
tages over moment estimators. First, they generally
have higher accuracy and precision than moment
methods, as verified by several extensive simulation
Phil. Trans. R. Soc. B (2005)
studies (e.g. Wang 2001; Berthier et al. 2002; Tallmon
et al. 2004). Moment estimators tend to overestimate
Ne when genetic drift is strong (measured by t /2Ne)
and when markers with high allelic diversity are used.
In such cases, some low-frequency alleles observed in
the first sample are absent from the second sample.
Moment estimators implicitly assume that these alleles
are lost from the population exactly at the tth
generation, while in reality they may be lost one or
more generations before the tth generation. Because of
this, the variance of the change in allele frequency is
underestimated andNe is overestimated. Furthermore,
several approximations were made in deriving
equations (2.8 and 2.9) or similar moment estimators,
resulting in further bias and imprecision, especially
when the sampling interval is short (t!3; Nei & Tajima
1981). Second, likelihood methods naturally weigh
information optimally. When there are many temporal
samples, for example, the relative information content
in different sampling intervals will depend on the
relative sample sizes and the number of generations
between the samples. This difference in information
content is automatically taken into account in like-
lihood or Bayesian methods but is difficult to incor-
porate into the moment estimators. Third, the
underlying demographic model of likelihood methods
is flexible and can be easily modified to allow for the
estimation of other interesting parameters, such as
population growth rate (Williamson & Slatkin 1999;
Wang 2001; Beaumont 2003b). The disadvantage of
probabilistic approaches is that they require much
more computation than moment estimators, and as a
result, some of them have not been tested extensively
and have difficulty in being extended to more compli-
cated demographic models.

All the above-mentioned temporal methods assume
an isolated population without immigration. However,
this assumption may not be valid for most populations
in the real world, which are connected through gene
flow in the forms of gametes and/or individuals.
Furthermore, migration, even occurring at an extre-
mely low rate, can substantially alter the genetic
makeup of a population and its changes over time.
Therefore, current temporal methods can considerably
bias estimates of Ne for populations with immigration.
Recently, Wang & Whitlock (2003) extend previous
moment and maximum-likelihood methods to allow
the joint estimation of Ne and migration rate (m) using
genetic samples taken from different populations and
time. It is shown that, compared with genetic drift
acting alone, migration results in changes in allele
frequency that are greater in the short term and smaller
in the long term, leading to under- and overestimation
of Ne, respectively, if it is ignored.

Temporal methods have been developed mainly for
populations with discrete generations. However, long-
lived species typically have overlapping generations and
samples from them generally contain individuals of
different age/sex groups. In principle, the basic
methods for discrete generations should apply approxi-
mately to populations with overlapping generations,
when individuals are sampled representatively (pro-
portionately) from all age/sex classes of the population
with an interval of one or preferably more generations
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(Nei & Tajima 1981). Although prolonging the
sampling interval is possible, representative sampling
is perhaps not realistic in many cases. First, there might
be little information about the composition (distri-
butions of individual age/sex) of the population in
question before samples are taken. Second, individuals
of different ages/sexes may have different behaviour and
habitat preferences, and may not even coexist in the
same region, making identification of the appropriate
biological population and obtaining a representative
sample difficult or virtually impossible (Jorde & Ryman
1995). Even if representative sampling and a long
sampling interval have been achieved, the methods
assuming discrete generations do not use the infor-
mation fully in samples from an age-structured
population, and result in low-precision estimates.
This is because an age-structured population does
not constitute a homogeneous breeding unit and
different age/sex classes are genetically correlated
(Hill 1979). Realizing the above problems, Jorde &
Ryman (1995) developed a moment estimator of Ne

applicable to populations with overlapping generations,
based on the ideal model of a fixed age/sex structure
and a constant number of individuals of each age/sex
class (Felsenstein 1971; Hill 1972, 1979). The main
difficulty in applying their moment estimator to
populations with overlapping generations is how to
group the data into discrete classes appropriately.
A sample now contains individuals from several diffe-
rent age/sex classes, so the temporal changes in allele
frequencies can be measured in many different ways
through grouping the data differently. For example,
allele frequencies can be compared between sampling
years within the same age class or between age classes
within a single sample, or between cohorts (individuals
born in the same year) regardless of the ages and
samples the individuals come from. Indeed, there are
many different ways data can be grouped, and the
particular grouping that is the best and how to combine
estimates of Ne obtained from different groupings are
not immediately apparent. A likelihood method could
solve this problem, so that the available data from
different age/sex classes in multiple samples can be
optimally used to give a single best estimate of Ne.

(d) Long-term Ne estimated from current genetic

variation

The amount and pattern of genetic variation in a
current population are shaped by the long-term
interaction of evolutionary forces of selection,
migration, drift, and mutation. In the simple situation
of an isolated population with a constant Ne, the
genetic variation at a neutral locus is determined by the
input from new mutations and the loss from genetic
drift. At drift–mutation equilibrium, the amount of
genetic variation is constant, determined by a single
quantity qZ4Neu for a diploid population, where u is
the rate of mutation per generation per DNA sequence
or locus.When a sample of individuals is taken from the
population and examined for some neutral markers, the
genetic variation revealed by these markers can then be
used to infer q. When independent information about u
is available, Ne can be estimated from the estimate of q.
When u is unknown, we can still get estimates of the
Phil. Trans. R. Soc. B (2005)
relative Nes of different populations when the same
markers and methods are used to estimate their qs.
(i) DNA sequences
DNA sequences represent the highest level of genetic
resolution and allow the development of powerful
statistical approaches to the inference of population
parameters. Different statistics have been proposed to
measure the extent of genetic variation at the DNA
level (Nei 1987). For a number of n DNA sequences
sampled at random from a population, the genetic
variation can be measured by the number of segregat-
ing nucleotide sites (S) among the sequences, the
average number of nucleotide differences between two
sequences (P) and the number of alleles (i.e. different
haplotypes; K). An estimate of q can be obtained from
each of the three measurements, assuming a random
mating population at drift–mutation equilibrium with-
out selection, immigration and recombination among
sites within a sequence. Under these assumptions and
the infinite-sites model, which assumes that the
number of nucleotide sites on a non-recombining
sequence is so large that each new mutation occurs at
a site that has not been mutated before (Kimura 1969),
Watterson (1975) derived the mean and variance of S,

EðSÞZ a1q; (2.10)

V ðSÞZ a1qCa2q
2; (2.11)

where aiZ
PnK1

jZ1 jKi for iZ1, 2. Watterson’s estimator,
qW, can be obtained from equation (2.10) as

qW ZS=a1; (2.12)

with sampling variance obtained from equations (2.10)
and (2.11) as

V ðqWÞZ
q

a1
C

a2q
2

a21
: (2.13)

Under the same assumptions and mutation model, the
mean (Watterson 1975) and variance (Tajima 1983) of
P are

EðPÞZ q; (2.14)

V ðPÞZ
nC1

3ðnK1Þ
qC

2ðn2 CnC3Þ

9nðnK1Þ
q2: (2.15)

An estimator of q, known as Tajima’s estimator qT, is
thus given by P, with sampling variance given by
equation (2.15). Under the same assumptions but
the infinite-allele model, which assumes that each
mutation creates a new allele not currently present in
the population (Kimura & Crow 1964), Ewens (1972)
showed that the mean of K is given by

EðK ÞZ q
XnK1

jZ0

ðqC jÞK1: (2.16)

Ewens’ estimator of q, qE, can then be obtained by
solving equation (2.16) for a given number of alleles
observed in a sample. The sampling variance of qE is
(Chakraborty & Schwartz 1990)

V ðqEÞz
qPnK1

jZ0
j

ðqCjÞ2

: (2.17)
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Figure 1. Efficiency of Watterson’s estimator qW, Tajima’s estimator qTand Ewens’ estimator qE relative to the theoretically best
estimator with minimum variance Vmin. The q values are assumed to be 1 (a) and 10 (b).

1402 J. Wang Estimators of effective population size

 on March 4, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
All three estimators are unbiased under the assump-
tions and mutation models. However, they use various
summary statistics of the sequence polymorphism
observed in a sample for estimating q, making little
use of the genealogical relationships among the sampled
sequences (Felsenstein 1992). For a sample of n non-
recombining sequences from a population evolving
according to the neutralWright–Fisher model, there is a
unique (unknown) genealogy specifying the relation-
ships among the sequences. The genealogy consists of
nK1 nodes and 2(nK1) branches. The time, ti, during
which there are exactly i (iZ2, 3,.,n) sequences in the
genealogy, is the time (in units of 2Ne generations)
required for i sequences to coalesce to iK1 sequences.
According to the standard coalescent theory (Watterson
1975; Kingman 1982a,b; Tajima 1983), ti follows the
exponential distribution with parameter liZi(iK1)/2
with mean EðtiÞZlK1

i and variance V ðtiÞZlK2
i , and the

covariance of ti and tj (isjZ2, 3,.,nK1) is zero. If the
genealogy is known, Ne can be estimated from each ti,
and a least-squaresmethod can give the best estimate by
combining the nK1 estimates optimally.Unfortunately,
the genealogy is unknown but can be inferred from the
sequences. In such an inferred genealogy (gene tree),
ti and branch lengths are in units of q or the expected
number of mutations, rather than 2Ne, because in the
absence of an outside standard, sequences can only give
information on the relative lengths of the intervals in
terms of the mutational changes that occurred during
them. The relationships between ti (or branch lengths)
in a gene tree and q can be exploited to infer q.

Fu & Li (1993) showed that the minimum variance
of the best unbiased estimator of q is realized when the
gene tree of n sequences can be inferred perfectly and is
fully used in estimating q. Under the neutral Wright–
Fisher model without recombination, the minimum
variance is

Vmin Z q
XnK1

kZ1

1

qCk

 !K1

: (2.18)

It can be shown that V(qW)ZVmin when q/0 or nZ2;
otherwise, V(qW)OVmin. Similarly, V(qT)ZVmin when
nZ2; otherwise, V(qT)OVmin. The relative efficiencies
of the three moment estimators indicated by Vmin

relative to their respective variances are shown in
Phil. Trans. R. Soc. B (2005)
figure 1. As can be seen, there is much room for
improvement on these estimators when q is not small
and the sample size is small (for qE) or large (for qW
and qT). qW is generally better than qT, and the
difference increases with sample size. The precision
of qE changes very fast with sample size, being the worst
when n is small and the best when n is large.

Fu (1994a,b) developed least-squares estimators
of q using the genealogical relationships provided by
the sequence data. For a gene tree of n sequences, let
xi be the total number of mutations on all branches
having exactly i (iZ1, 2,.,nK1) descendant
sequences in the sample. Under the infinite-sites
model, it can be shown that qWZ

PnK1
iZ1 xi=a1 and

qTZ
PnK1

iZ1 ð2iðnK iÞ=ðnðnK1ÞÞÞxi (Fu 1994b). In
other words, both estimators are linear functions
of xi with predetermined constant coefficients and
therefore are not expected to generate the best
estimates in general. Ideally, these xi should be
combined linearly in an estimator using the optical
coefficients determined by the least-squares
approach, using the variance and covariance struc-
ture of xi. Such an estimator was proposed by Fu
(1994a), using the number of mutations on each of
the 2(nK1) branches inferred from the gene tree
that is reconstructed by the unweighted pair-group
method with arithmetic mean. Simulations showed
that, under the neutral Wright–Fisher model with-
out recombination, the variance of this estimator
can be substantially smaller than those of qW and qT
and is always close to Vmin. Using xi as the primary
source of information, Fu (1994b) developed
another estimator applicable to populations with
recombination or subdivision in the finite island
model.

More recent efforts in estimating q focus on
developing probabilistic approaches that take the
uncertainty of reconstructed gene trees into account
and apply to more complex demographic models and
more plausible mutational models. Two distinctive
classes of methods are available. One uses the
Metropolis–Hastings algorithm to sample a large
number of plausible genealogies to calculate the like-
lihood of the parameter q given the DNA sequence
data (e.g. Kuhner et al. 1995). Under the neutral
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Wright–Fisher model without recombination and
population subdivision, the method of Kuhner et al.
(1995) makes maximum-likelihood estimates of q from
DNA sequences evolving under Kimura’s (1980) two-
parameter model. Their simulation showed that the
likelihood estimator is unbiased, and is slightly more
precise than Watterson’s estimator. Recently, the
method has been extended to more complex demo-
graphic models, allowing the estimation of q in the
presence of recombination (Kuhner et al. 2000b),
population growth or decline in the exponential
model (Kuhner et al. 1998) and population subdivision
(Beerli & Felsenstein 1999, 2001).

The second class of methods uses coalescent theory
to derive recurrent equations for the probability of the
polymorphism pattern in a sample, conditional on
parameters such as q. Such recurrent equations are
then used either directly or indirectly in a likelihood
framework to estimate q (and other parameters) given
data. This class of methods is more general, applying to
samples of markers with or without genealogical
information. A simple example is about the probability
of the number of segregating sites in a sample of DNA
sequences. Under the infinite-sites model, the prob-
ability of j segregating sites in a sample of n sequences
drawn from a population evolving under the neutral
Wright–Fisher model is (Tavaré 1984)

PnðjÞZ
Xj
iZ0

PnK1ðjK iÞ
q

qCnK1

� �i nK1

qCnK1
:

(2.19)

For a given number of segregating sites observed in a
sample of a moderate size, a maximum-likelihood
estimate of q and the confidence intervals can be easily
obtained from equation (2.19) (e.g. Wright et al. 2003).
In more complicated situations, such recurrent
equations can be derived, but are typically unrealistic
to solve by direct numerical methods. MCMC
approaches are used instead to estimate the probability
of the polymorphism pattern in a sample through the
recurrent equations, and thus to infer parameters of
interest by maximum likelihood (Griffiths & Tavaré
1994a,b, 1995). Recently, the method has been
extended to subdivided populations to estimate q and
other parameters such as migration and population
growth rates (Bahlo & Griffiths 2000).

The above-mentioned methods assume that the Ne

of a population is constant or follows a simple
exponential or linear growth model, and that the
mutation rate (u) is also constant. Over the long
evolutionary scale in which all the sampled sequences
coalesce into their most recent common ancestor, it is
probable that neither of these assumptions will be met
in a real population. To overcome these problems,
genetic data should be sampled sequentially from an
evolving population, which can then be analysed in a
coalescence based likelihood framework to inferNe and
u separately and perhaps their changes over time
(Drummond et al. 2002; Seo et al. 2002).
(ii) Microsatellites and other markers
Approaches similar to those for DNA sequence data
shown above can be applied to microsatellite and other
Phil. Trans. R. Soc. B (2005)
kinds of markers for estimating q. The main difference
between different markers is the mutational process,
not the coalescent process. For microsatellites, the
widely used mutation model is the single stepwise
mutation model (SSMM; Ohta & Kimura 1973),
which assumes that a mutation leads to one repeat
unit increase or decrease in allele size with an equal
probability. Under this simple mutation model, the
variance in allele size expected at the equilibrium
between mutation and genetic drift in a Wright–Fisher
population without selection and population subdivi-
sion is (Moran 1975)

Vs Z q=2; (2.20)

and the variance ofVs is (Zhivotovsky &Feldman 1995)

VarðVsÞZ q=12Cq
2=3: (2.21)

Equations (2.20) and (2.21) suggest an estimator of q
using an estimate of the variance in allele size, �V s, from
a sample,

qs Z 2 �V s; (2.22)

with sampling variance

V ðqsÞZ ðqC4q2Þ=3: (2.23)

Estimator qs is unbiased (Xu&Fu 2004), but has a high
sampling variance which increases very rapidly with q,
as indicated by equation (2.23).

The genetic variation at a microsatellite locus can
also be measured by heterozygosity, H, defined as the
probability that two genes drawn at random from a
population are of different allelic types. Under the same
population and mutation models, the expected hetero-
zygosity at equilibrium is derived (Ohta & Kimura
1973) as

EðHÞZ 1K1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C2q

p
: (2.24)

If a sample of individuals is taken from the population
and examined for a microsatellite, then the popu-
lation’s heterozygosity can be estimated as

�H Z 1K
Xk
iZ1

p2i ; (2.25)

where k is the number of alleles and pi is the ith allele
frequency observed in the sample. A moment estimator
of q can then be obtained from equation (2.24) as

qH Z
1

2
K

1

2ð1K �H Þ2
: (2.26)

qH uses information on both the number and frequen-
cies of alleles, and is generally more precise than qs.
Unfortunately, however, qH overestimates q because of
the nonlinear transformation of equation (2.26). Xu &
Fu (2004) found that the overestimation is a function
of sample size n and q only, and obtained an empirical
regression equation from simulations to correct for the
bias. Their simulations showed that qH estimated by
equation (2.26) and corrected by their regression
equation is unbiased, and has a much smaller sampling
variance than qs.

The mutational process for microsatellites can be far
more complicated than SSMM assumed above. For
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example, the rate of mutations leading to expansion
may not be equal to that of contraction in allele size
(e.g. Chakraborty et al. 1997), a mutation may result in
changes of two or more repeat units (Di Rienzo et al.
1994), and the pattern of the mutational processes can
differ among loci (Di Rienzo et al. 1998). The
simulations of Xu & Fu (2004) showed that both qs
and qH estimators are upwardly biased when mutations
involving multiple repeat units are allowed to occur,
and the upward bias is an increasing function of q.

Probabilistic methods have also been proposed
for estimating q from microsatellites under SSMM.
Nielsen (1997) developed a likelihood method, based
on the pioneering work of Griffiths & Tavaré (1994a,b)
to estimate q from microsatellites and to test hypo-
theses regarding microsatellite evolution. The method
was computationally intensive even for a single locus,
making accurate estimation using multiple loci diffi-
cult. Wilson & Balding (1998) simplified the likelihood
computation by treating the (unknown) ancestral
allelic states as auxiliary parameters in their MCMC
algorithm. They showed by simulations that although a
single microsatellite usually does not give enough
information for useful inferences of q and other
parameters, several completely linked microsatellites
do. Recently, likelihood or Bayesian methods have been
proposed to infer q frommicrosatellite data under more
complex demographic models that allow for population
subdivision with migration (Beerli & Felsenstein 1999,
2001) and population growth or decline in the linear or
exponential model (Beaumont 1999; Wilson et al.
2003). In parallel, probabilistic methods have been
developed for using SNPs in inferring population
parameters including q (Kuhner et al. 2000a; Nielsen
2000; Wilson et al. 2003).

(e) Ancient Ne estimated from current genetic

variation

The polymorphisms of markers observed in a sample
from the current population can be used to infer the q

or the long-term Ne of the population over the past of
the order of Ne generations. For an ancestral species
that became extinct in the remote past, it is usually
impossible to apply the same approach to estimating its
Ne, because genetic polymorphism is generally not
observable. However, the genetic polymorphism of an
ancestral species (ancestral polymorphism) can be
inferred indirectly from that of its two or more
descendant species, which can then be used to estimate
the ancestral q or Ne.

A simple method uses orthologous DNA sequences
from three closely related species with a known
phylogeny (Nei 1987; Wu 1991; Hudson 1992), and
is thus called the ‘trichotomy method’. A classical
example is the trio consisting of humans, chimpanzees
and gorillas, with the first speciation event leading to
gorilla lineage and the second speciation event leading
to humans and chimpanzees. The principle of the
trichotomy method can be illustrated using the above
classical example. The genealogy of orthologous DNA
sequences sampled from such a trio may or may not be
identical to the species phylogeny because of the
presence of ancestral polymorphism common to the
descendant species. The extent of inconsistency
Phil. Trans. R. Soc. B (2005)
between gene trees and the species tree depends on
the amount of ancestral polymorphism and the time-
interval (T, in generations) between the two successive
speciation events. The larger the Ne of the ancestral
species common to humans and chimpanzees relative
to T, the greater the proportion, Pdis, of gene trees
discordant with the species tree. The two orthologous
genes from humans and chimpanzees may either be
derived from a common ancestor in the ancestral
species during the time-interval T or remain distinct
throughout interval T. The probability of the second
event is eKt, where tZT/2Ne for autosomal diploid loci,
tZT/(Ne/2) for Y-linked or mitochondrial loci assum-
ing a sex ratio of 1, and tZT/(3Ne/2) for X-linked loci.
Given the second event, there must exist three distinct
ancestral gene lineages before the first speciation event,
and three equally probable gene genealogies are
possible. One genealogy is consistent with the species
tree, and the other two genealogies are discordant with
the species tree, resulting in a total discordant
proportion of (2/3)eKt. Equating this expected pro-
portion to the observed proportion of discordance
among many unlinked autosomal loci, ð2=3ÞeKtZ �P dis,
we therefore obtain

Ne ZK
T

2 ln 3
2
�P dis

� � : (2.27)

The trichotomy method was applied to human and
great ape sequence data, yielding estimates for the Ne

of the human–chimpanzee ancestral population in the
range of 50 000 to 150 000, depending on the datasets
used, gene tree reconstruction methods applied and the
generation intervals (15 or 20 years) assumed (Ruvolo
1997; Chen & Li 2001).

The trichotomy method is quite simple, but has
several drawbacks (Takahata & Satta 2002; Yang
2002). First, the method assumes that gene trees are
correctly constructed, so that the inconstancy between
gene and species trees comes solely from ancestral
polymorphism. In reality, however, gene trees are
estimated from sequence data, and thus suffer from
sampling errors owing to limited information in the
sequence data. The sampling error in reconstructed
gene trees is usually quite high, because closely related
species are considered and sequences from them are
highly similar. The sampling errors in gene tree
reconstruction would result in the overestimation of
�P dis, and thus overestimation of Ne. Second, the
trichotomymethod is inefficient because only a fraction
of the information available from the sequence data is
used, while other information (such as branch lengths
in gene trees) that is useful for Ne inference is ignored.
Third, the interval between the two speciation events,
T, was assumed to be known, but in reality it may be
unknown or at best is estimated with large sampling
errors.

It is obviously desirable to estimate Ne using
information on both the topologies and branch lengths
of gene trees after accounting for their uncertainties in
reconstruction. Takahata (1986) suggested such a
method for estimating the Ne of the common ancestors
of two closely related species, using a pair of
orthologous genes with one from each of the two
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species. The coalescence time of the two orthologous
genes consists of two parts, the species divergence time
y and the time x that the two genes coexist in the
ancestral species before they coalesce. For any pair of
orthologous genes, y is unknown but fixed, while x is
variable among pairs of orthologous genes. Both the
mean and variance of x among pairs of orthologous
genes depend on the Ne of the ancestral species. Using
many pairs of orthologous genes, therefore, it is
possible to extract information on x and y and, thus,
to estimate the Ne of the ancestral species. Such a
moment estimator was developed by Takahata (1986),
and was later on extended to a full likelihood method
and to the case of three extant species, where theNes of
the two extinct ancestral species as well as the two
speciation dates were estimated jointly (Takahata et al.
1995; Takahata & Satta 2002). Yang (1997, 2002)
extended the method to account for variation in
mutation rate among loci, and used the finite-sites
model of Jukes & Cantor (1969) to correct for multiple
substitutions at the same site. Applying his likelihood
and Bayesian methods to the data of Chen & Li (2001),
Yang (2002) obtained an estimate of the Ne of the
human–chimpanzee ancestral population. The esti-
mate is in the range of 12 000 to 21 000, much smaller
than those of previous studies. Rannala & Yang (2003)
further extended Yang’s Bayesian method, allowing the
use of multiple sequences from a species and an
arbitrary number of species with a known topology of
the species tree.

Another class of methods are suitable for an
ancestral species that recently split and diverged into
two closely related species. Wakeley & Hey (1997)
proposed a moment estimator of the effective size of an
ancestral species assumed to have recently been split
into two isolated sister species evolving independently.
The segregating sites in a sample of orthologous DNA
sequences from the two sister species can be parti-
tioned into four mutually exclusive categories. Cate-
gory one comprises sites that are polymorphic in
species 1 but monomorphic in species 2. Category 2
comprises sites that are polymorphic in species 2 but
monomorphic in species 1. Category 3 comprises sites
that are polymorphic in both species. Category 4
comprises sites showing fixed differences between the
two species. Under the neutral infinite-sites model, and
assuming a molecular clock and constant effective sizes
of the ancestral (NA) and the two descendent species
(N1, N2), Wakeley & Hey (1997) derived the expected
numbers of sites in the four categories. The four
expected numbers turn out to be functions of the four
parameters, qiZ4Niu (for iZ1, 2, A) and tZ2ut, where
u is the mutation rate per sequence per generation and t
is the divergence time in generations. The four
parameters can be obtained by equating the expected
to the observed numbers of sites in the four categories
and solving the four equations. Simulations show that
all the four parameters can be estimated reasonably
well with little bias when data onmany unlinked loci are
available. In the case of few non-recombinant loci,
however, the four expected numbers are highly
negatively correlated, resulting in a failure of the
estimation procedure. Recently, Nielsen & Wakeley
(2001) extended the above isolation model to allow
Phil. Trans. R. Soc. B (2005)
asymmetrical migration between the two descendant
species and proposed full likelihood and Bayesian
methods to estimate all of the six parameters (the
above four parameters and two migration rates) jointly.
Their methods apply to a single locus without
recombination. More recently, the methods were
generalized to allow the use of multiple unlinked loci
with the same or different modes of inheritance (Hey &
Nielsen 2004).

Compared with the long-term Ne of an extant
population (species), the Ne of an ancestral extinct
species is more difficult to estimate, because the genetic
variation observed in current samples has less infor-
mation about the more remote past. Furthermore,
methods for estimating ancestral Ne require more
assumptions, and some of them are more likely to be
violated than those for estimating the long-term Ne of
an extant species. For example, the molecular clock
hypothesis typically assumed in methods for estimating
ancestral Ne may be a good approximation when the
species involved are tightly related and the total
divergence time is not very long. Otherwise, different
mutation (or substitution) rates must be assumed on
different lineages. Because of the long evolutionary
history involved, mutation rate heterogeneity both
among nucleotide sites within a locus and among
different loci might play an important role in interpret-
ing the data. Failure to account for the heterogeneity
could lead to an overestimation of x and thus to an
overestimation of the ancestral Ne (Takahata & Satta
2002). Currently, mutation rate heterogeneity was
taken partially into account by some methods (e.g.
Yang 1997, 2002) but was ignored by most others. All
of the above methods assume no intragenic recombina-
tion during the long period in which the sampled
sequences coalesce into their common ancestor.
Recombination reduces the variance in coalescence
times (x) across loci, resulting in an underestimation of
the ancestral Ne when ignored (Takahata & Satta
2002). Wall (2003) proposed a likelihood method
based on summary statistics of data, in which he
incorporated intragenic recombination but assumed
the infinite-sites mutation model with a constant
mutation rate among nucleotide sites within a locus
and among loci. The method uses a single DNA
sequence from each of three or more species, and is
computationally very intensive.
3. DISCUSSION
Over the past three decades, we have seen a prolifer-
ation of methods developed to estimate the current,
past and ancient effective population sizes using genetic
marker data. Coupled with the rapid development in
molecular biology and computational techniques and
facilities, these methods have been widely applied to
understanding the demographic history of many
species, including humans, and to inferring the
evolutionary mechanisms in shaping the genetic
variation observed in the current populations. Given
the numerous methods available, in designing an
experiment and choosing an appropriate method for
data analysis, it is fundamental to understand the logic
used, the assumptions made, the data and information
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required and the interpretation of the estimate
obtained by each method. This paper provides such
an overview of these methods.

It should be noted that different methods have
different time-scales on which Ne is measured. The
heterozygosity excess methods estimate the effective
size of the parental population, the LD methods infer
the short- to intermediate-term (mean) effective
population size, the length of the term being dependent
on the linkage between markers. The temporal
methods estimate the harmonic mean effective popu-
lation size during the period when samples are taken,
while the methods considering the mutational process
explicitly estimate the long-term Ne in the past on a
time-scale of the order of Ne generations. It is
important to understand the time-scales behind each
method, because natural populations rarely have
constant Ne; rather, they are dynamic entities changing
sizes and distributions dramatically over time. There-
fore, using the same data, different methods could yield
considerably different estimates of Ne.

A related issue is the spatial scale over which Ne is
measured. In practice, the exact definition of a natural
population may be difficult, because it depends on the
time-scale concerned, and the migration rate and
migration distance of the population. Frogs in a
pond, for example, may be regarded as a single random
mating population over a short period during which the
total immigration rate is sufficiently small, but as a
subpopulation connected with other subpopulations
over a long period during which the total immigration
rate is no longer negligible. The pattern and amount of
genetic variation observed in a sample of individuals
from the pond can then be used to estimate the short-
term (or current) Ne of the pond, and the long-term
Ne of the entire metapopulation using appropriate
methods (Wang &Whitlock 2003). The time-scale and
spatial scale are usually correlated. A small population
in an apparently small spatial scale (e.g. a population
on an island) may reflect a larger population on a larger
spatial scale (e.g. the large continental population from
which the island population originates and receives
immigrants) in the longer term.

We should bear in mind that any estimation method
has a number of assumptions under which the method
is derived. In the real world, these assumptions may not
be tenable, and violation of one or more of these
assumptions may lead to estimates of Ne that make
little sense. Random mating, for example, is a critical
assumption for the heterozygosity excess methods.
When violated, Ne can be biased dramatically. The
robustness of each method to the violation of its
underlying assumptions has not been evaluated fully,
and future work is needed in this respect. Furthermore,
the performance and statistical properties of some
methods are poorly known, especially those likelihood
or Bayesian methods that require intensive compu-
tation. Comparison of the methods in precision,
accuracy and computational efficiency would facilitate
the choice in practical applications.

It is notable that the information available in data is
generally not fully used by any single method in
estimating Ne. For estimating short-term Ne from
temporal samples, for example, the changes in allele
Phil. Trans. R. Soc. B (2005)
frequencies over time is extracted from data and used

as information about Ne, while the information about

the deviation from HWP and LD in each sample is

ignored. Although one can simply use the three pieces

of information independently to obtain separate Ne

estimates, it is not obvious how to combine them

optimally to give a single best estimate. How to use

such different pieces of information simultaneously in a

single estimator deserves further investigation.

Ne is a parameter summarizing the effects of many

other demographic parameters in determining a given

genetic property of the population (Caballero 1994). In

some cases, such a highly summary parameter is

desirable, simplifying both the explanation of the

pattern and amount of genetic variation observed in a

population and the prediction of the genetic properties

(such as loss of variation, fixation probability, changes

in fitness of the population) in the future. In other

cases, however, it is more helpful to know the details

that determine Ne. This is especially true in conserva-

tion biology where appropriate management can be

exercised only when detailed knowledge of the popu-

lation is available. For example, a population estimated

to have a smallNe can be a result of various causes such

as a bottleneck in census size, a biased sex ratio or a

large variance in male and/or female reproductive

output. Different causes imply different managements

suitable to increase theNe in the future. Unfortunately,

current methods estimate a single Ne or, at best, its

temporal changes only. To obtain insight into the

demographic details of a population, more information

is necessary.
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