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Introduction

Effective population size (Ne) is widely regarded as one of

the most important parameters in both evolutionary biol-

ogy (Charlesworth 2009) and conservation biology (Nun-

ney and Elam 1994; Frankham 2005), but it is

notoriously difficult to estimate in nature. Logistical chal-

lenges that constrain the ability to collect enough demo-

graphic data to calculate Ne directly have spurred interest

in genetic methods that can provide estimates of this key

parameter, based on measurements of genetic indices that

are affected by Ne (reviewed by Wang 2005). Although

some early proponents suggested that indirect genetic

estimates of Ne would only be useful in cases where the

natural population was so large it could not be counted

effectively, it was subsequently pointed out that these

methods have much greater power if population size is

small. Indeed, the rapid increase in applications in recent

years has been fueled largely by those interested in con-

servation issues or the study of evolutionary processes in

local populations that often are small (Schwartz et al.

1999, 2007; Leberg 2005; Palstra and Ruzzante 2008).

Estimates of contemporary effective size (roughly, Ne

that applies to the time period encompassed by the sam-

pling effort) can be based on either a single sample (Hill

1981; Pudovkin et al. 1996) or two samples (Krimbas and

Tsakas 1971; Nei and Tajima 1981). The two-sample

(temporal) method, which depends on random changes

in allele frequency over time, has been by far the most

widely applied, and it was the only method considered

in a recent meta-analysis of genetic estimates of Ne in

natural populations (Palstra and Ruzzante 2008). This is
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Abstract

Genetic methods are routinely used to estimate contemporary effective popula-

tion size (Ne) in natural populations, but the vast majority of applications have

used only the temporal (two-sample) method. We use simulated data to evalu-

ate how highly polymorphic molecular markers affect precision and bias in the

single-sample method based on linkage disequilibrium (LD). Results of this

study are as follows: (1) Low-frequency alleles upwardly bias N̂e, but a simple

rule can reduce bias to <about 10% without sacrificing much precision. (2)

With datasets routinely available today (10–20 loci with 10 alleles; 50 individu-

als), precise estimates can be obtained for relatively small populations

(Ne < 200), and small populations are not likely to be mistaken for large ones.

However, it is very difficult to obtain reliable estimates for large populations.

(3) With ‘microsatellite’ data, the LD method has greater precision than the

temporal method, unless the latter is based on samples taken many generations

apart. Our results indicate the LD method has widespread applicability to

conservation (which typically focuses on small populations) and the study of

evolutionary processes in local populations. Considerable opportunity exists to

extract more information about Ne in nature by wider use of single-sample

estimators and by combining estimates from different methods.
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a curious result, given that every temporal estimate

requires at least two samples that could each be used to

provide a separate, single-sample estimate of Ne. Further-

more, whereas the amount of data used by the temporal

method increases linearly with increases in numbers of

loci (L) or alleles (K), the amount of data used by the

most powerful single-sample estimators increases with the

square of L and K. This suggests that, given the large

numbers of highly polymorphic molecular markers cur-

rently available, there is a large, untapped (or at least

under-utilized) resource that could be more effectively

exploited to extract information about effective size in

nature.

Toward that end, in this study we evaluate precision

and bias of the original single-sample method for esti-

mating Ne – that based on random linkage disequilib-

rium (LD) that arises by chance each generation in

finite populations (Laurie-Ahlberg and Weir 1979; Hill

1981). In the moment-based LD method, accuracy

depends on derivation of an accurate expression for the

expectation of a measure of LD (r̂2) as a function of

Ne. As r2 is a ratio, deriving its expected value is

challenging, and the original derivation that ignored

second-order terms was subsequently shown to lead to

substantial biases in some circumstances (England et al.

2006). An empirically derived adjustment to E(̂r2)

(Waples 2006) has addressed the bias problem, but the

bias correction was based on simulated data for diallelic

gene loci and did not consider precision in any detail.

Although r̂2 is a standardized measure of LD, the stan-

dardization does not completely remove the effects of

allele frequency (Maruyama 1982; Hudson 1985; Hedrick

1987). Therefore, it is necessary to evaluate more rigor-

ously the LD method using simulated data for highly

polymorphic markers (now in widespread use) that

include many alleles that can drift to low frequencies.

Specifically, we ask the following questions:
l How is precision affected by factors under control of

the investigator (L, K, number of individuals sampled)

and those that are not [true (unknown) Ne]?
l What effect do rare alleles have on precision and bias?
l What practical guidelines can help balance tradeoffs

between precision and bias?
l Under what conditions can the LD method provide

useful information for practical applications? If Ne is

small, how often does the method mistakenly estimate a

large Ne? If Ne is large, how often does the method mis-

takenly estimate a small Ne?
l What kind of performance can we expect when data

consist of a very large number of diallelic, single-nucleo-

tide-polymorphism (SNP) markers?
l How does performance of the LD method compare to

other methods for estimating contemporary Ne?

Methods

Genotypic data were generated for ‘ideal’ populations

(constant size, equal sex ratio, no migration or selection,

discrete generations, and random mating and random

variation in reproductive success) using the software

EasyPop (Balloux 2001). One thousand replicate popula-

tions were generated for each size considered (N = 50,

100, 500, 1000, 5000 ideal individuals). In the standard

parameter set, each simulated individual had data for

L = 20 independent gene loci, which had a mutational

model approximating that of microsatellites (mutation

rate l = 5 · 10)4; k-allele model with A = 10 possible

allelic states; see Table 1 for a definition of notation). In

some runs, we used 5, 10, or 40 loci and/or 5 or 20 alleles

per locus. Each simulation was initiated with maximal

diversity (initial genotypes randomly drawn from all pos-

sible allelic states) and run for successive generations until

the mean within-population expected heterozygosity (HE)

reached 0.8 (comparable to levels found in many studies

of natural populations using microsatellites). Simulations

with N = 5000 used a lower mutation rate (l = 5 · 10)5)

because l = 5 · 10)4 leads to mutation–drift equilibrium

values of HE that are larger than 0.8. After the HE = 0.8

criterion was met, samples of S = 25, 50, 100, or 200 (for

N ‡ 200) individuals were taken in the final generation.

As the populations were ‘ideal,’ apart from random sam-

pling errors the effective size and census size were the

same (more precisely, for otherwise ideal populations in

species with separate sexes, Ne � N + 0.5; Balloux 2004).

Table 1. Notation used in this study.

N Population size, equal to the number of ideal individuals

Ne Effective population size per generation

Nb Effective number of breeders in a specific time period

N̂e An estimate of effective size based on genetic data

LD Denotes the linkage disequilibrium method for estimating Ne

T Denotes the temporal method for estimating Ne

CV Coefficient of variation

S Number of individuals sampled for genetic analysis

L Number of (presumably independent) gene loci

A Maximum number of allelic states for a gene locus

K Actual number of alleles at a locus

Pcrit Criterion for excluding rare alleles; alleles with

frequency <Pcrit are excluded

n Total number of independent allelic combinations

(degrees of freedom) for the LD method (given by eqn 1)

n¢ Total number of independent alleles (degrees of freedom)

for the temporal method (given by eqn 5)

t Elapsed number of generations between samples in the

temporal method

Vk Variance among adults in lifetime contribution of gametes

to the next generation
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The composite Burrows method (Weir 1996) was used

to calculate r̂2, an estimator of the squared correlation of

allele frequencies at pairs of loci. Because it is straightfor-

ward to calculate and does not require one to assume

random mating (as does Hill’s 1974 maximum likelihood

method), Weir (1979) recommended use of the Burrows

method for most applications. For each sample, an overall

mean �̂r2 was computed as the weighted average r̂2 over

the L(L)1)/2 pairwise comparisons among loci. With 20

loci initially segregating and a high mutation rate, virtu-

ally every replicate had 20 polymorphic loci at the time

of sampling, yielding 20 · 19/2 = 190 pairwise compari-

sons of loci. The weights for each locus pair were a func-

tion of the relative number of independent alleles used in

the comparison, as discussed in Waples and Do (2008). A

locus with K alleles has the equivalent of K)1 indepen-

dent alleles. For two loci with K1 and K2 alleles, respec-

tively, there are the equivalent of (K1)1)(K2)1)

independent allelic comparisons (Zaykin et al. 2008). The

total degrees of freedom associated with the overall

weighted mean �̂r2 was computed as

n ¼
X

i¼1;L�1
j¼iþ1;L

ðKi � 1ÞðKj � 1Þ: ð1Þ

The LD method is based on the following theoretical

relationship between r̂2 and Ne (Hill 1981):

Eð̂r2Þ � 1

3Ne
þ 1

S
: ð2Þ

Thus, r̂2 has two components: one due to drift (1/3Ne)

and one to sampling a finite number of individuals (1/S).

Subtracting the expected contribution of sampling error

produces an unbiased estimate of the drift contribution

to LD, which can be used to estimate Ne:

N̂e ¼
1

3ð̂r2 � 1=SÞ : ð2aÞ

Equation (2) is only approximate as it ignores second-

order terms in S and Ne, which can lead to substantial

bias in N̂e. Therefore, the adjusted expectations for the

drift and sampling error components of r̂2 developed by

Waples (2006), as implemented in the software Ldne

(Waples and Do 2008), were used to calculate r̂2 and esti-

mate effective size. To assess possible biases from numer-

ous low-frequency alleles, �̂r2 was computed separately

after excluding alleles with frequencies below the follow-

ing cutoffs: Pcrit = 0.1, 0.05, 0.02, 0.01. With S = 25, the

lowest possible allele frequency is 1/(2S) = 0.02, which

means that for this sample size Pcrit = 0.02 and 0.01 both

fail to screen out any alleles that actually occur in the

population. Therefore, for S = 25 we used Pcrit = 0.03

rather than 0.02; this provided a contrast between the cri-

terion 0.01 (which allows all alleles) and 0.03 (which

excludes only alleles that occur in a single copy).

Accuracy was evaluated by comparing harmonic mean

N̂e across replicates to the nominal effective size, N. A

theoretical measure of precision can be obtained from the

following expression for the coefficient of variation (CV)

of N̂e, modified from Hill (1981; Equation 8) to reflect

current notation:

CVLDðN̂eÞ �
ffiffiffiffiffiffiffiffi
2=n

p
1þ 3Ne

S

� �
: ð3Þ

This expression assumes that the loci are not physically

linked and that S and K are constant across loci. Our

simulations used unlinked loci and constant sample sizes,

and variation in the actual number of alleles per locus

was relatively small.

Equation (3) can be misleading if (as will often be the

case) the distribution of N̂e is sharply skewed toward high

values. Therefore, we also considered an empirical mea-

sure of precision, CV(�̂r2). Another useful metric that

measures both accuracy and precision is the mean-

squared error (MSE = Variance + Bias2). We calculated

MSE for each parameter set as the mean of ½�̂r2
i � Eðr̂2Þ�2,

where �̂r2
i is the overall mean r̂2 for the ith replicate and

E(̂r2) is the expected value of r̂2, obtained from Table 2

of Waples (2006) for the specific values of S and Ne.

For comparative purposes, an analog to eqn (3) for the

moment-based temporal method is (modified from Pollak

1983, Equation 29, to reflect current notation):

CVTðN̂eÞ �
ffiffiffiffiffiffiffiffiffi
2=n0

p
1þ 2Ne

tS

� �
; ð4Þ

where the subscript T denotes the temporal method. In

eqn (4), lower case t is the number of generations

between samples and n¢ is the number of independent

alleles for the temporal method, which is given by

n0 ¼
X

i¼1;L
ðKi � 1Þ: ð5Þ

Results

Precision

In the LD method, CV(N̂e) is an increasing function of

N – that is, variance is higher and precision lower for

populations with large effective size (eqn 3). Palstra and

Ruzzante (2008) found a similar result in a review of

published temporal N̂e estimates. Conversely, CV(N̂e)

declines (and precision increases) with larger samples of

individuals and more allelic combinations. These patterns

are illustrated in Fig. 1. When effective size is moderately

small (Ne = N = 100), good precision can be obtained

even with moderate amounts of data [CV(N̂e) < 0.2 for

S = 50, L = 10]. However, if Ne is large (�1000), preci-

sion will be poor unless large amounts of data are

Precision and bias of LD estimates Waples and Do
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Table 2. Percentage of N̂e estimates for the LD method that fell outside the indicated lower and upper bounds relative to nominal Ne = N.

N S Lower bound

Pcrit

Upper bound

Pcrit

0.1 0.05 0.02* 0.01 0.1 0.05 0.02* 0.01

L = 20

50 25 <0.1N 0.0 0.0 0.0 0.0 >10N 0.0 0.0 0.0 0.0

<0.5N 3.7 1.3 0.6 0.0 >2N 3.0 2.3 2.7 8.3

50 <0.1N 0.0 0.0 0.0 0.0 >10N 0.0 0.0 0.0 0.0

<0.5N 0.0 0.0 0.0 0.0 >2N 0.0 0.0 0.0 0.7

100� <0.1N 0.0 0.0 0.0 0.0 >10N 0.0 0.0 0.0 0.0

<0.5N 0.0 0.0 0.0 0.0 >2N 0.0 0.0 0.0 0.0

100 25 <0.1N 0.0 0.0 0.0 0.0 >10N 1.9 0.5 0.4 0.6

<0.5N 10.7 5.1 1.6 0.1 >2N 10.6 8.4 10.9 18.7

50 <0.1N 0.0 0.0 0.0 0.0 >10N 0.0 0.0 0.0 0.0

<0.5N 0.1 0.0 0.0 0.0 >2N 2.5 0.6 1.3 4.6

100 <0.1N 0.0 0.0 0.0 0.0 >10N 0.0 0.0 0.0 0.0

<0.5N 0.0 0.0 0.0 0.0 >2N 0.0 0.0 0.0 0.0

500 25 <0.1N 0.0 0.0 0.0 0.0 >10N 29.6 26.5 25.6 31.7

<0.5N 34.6 29.0 25.3 16.1 >2N 37.1 34.5 37.1 43.5

50 <0.1N 0.0 0.0 0.0 0.0 >10N 17.2 11.1 10.8 9.4

<0.5N 15.5 7.0 2.4 2.1 >2N 31.5 26.0 26.7 32.0

100 <0.1N 0.0 0.0 0.0 0.0 >10N 3.6 0.9 0.5 0.4

<0.5N 3.5 1.0 0.0 0.0 >2N 15.8 9.0 6.6 8.4

200 <0.1N 0.0 0.0 0.0 0.0 >10N 0.1 0.0 0.0 0.0

<0.5N 0.1 0.0 0.0 0.0 >2N 2.8 0.7 0.1 0.0

1000 25 <0.1N 2.1 0.2 0.1 0.0 >10N 43.1 39.1 36.9 43.1

<0.5N 39.3 38.1 33.8 26.6 >2N 46.8 43.6 43.2 51.1

50 <0.1N 0.0 0.0 0.0 0.0 >10N 33.3 28.6 25.2 26.7

<0.5N 26.2 21.6 14.8 11.8 >2N 42.2 39.4 39.1 42.5

100 <0.1N 0.0 0.0 0.0 0.0 >10N 17.0 8.8 5.9 6.2

<0.5N 15.1 5.8 2.2 2.2 >2N 29.8 22.0 21.1 23.1

200 <0.1N 0.0 0.0 0.0 0.0 >10N 2.9 0.7 0.1 0.0

<0.5N 2.6 0.2 0.0 0.0 >2N 12.6 6.7 4.8 4.8

5000 25 <0.1N 31.5 26.7 20.7 17.5 >10N 47.9 47.1 48.1 51.2

<0.5N 48.8 47.8 45.5 40.8 >2N 48.8 48.0 49.3 53.1

50 <0.1N 15.8 7.6 3.5 3.0 >10N 50.4 49.5 49.2 50.6

<0.5N 42.4 38.8 36.7 34.5 >2N 52.3 52.8 51.7 54.1

100 <0.1N 2.5 0.2 0.2 0.1 >10N 44.8 42.4 41.3 39.9

<0.5N 38.4 35.9 30.3 27.8 >2N 48.2 46.2 47.3 47.6

200 <0.1N 0.0 0.0 0.0 0.0 >10N 37.1 28.2 23.3 21.2

<0.5N 31.5 24.8 20.9 17.5 >2N 42.7 38.1 34.6 35.0

S = 50

500 40 <0.1N 0.0 0.0 0.0 0.0 >10N 1.9 0.5 0.4 0.5

500 40 <0.5N 4.4 3.1 0.1 0.0 >2N 11.1 10.4 13.8 15.7

500 20 <0.1N 0.0 0.0 0.0 0.0 >10N 17.2 11.1 10.8 9.4

500 20 <0.5N 15.5 7.0 2.4 2.1 >2N 31.5 26.0 26.7 32.0

500 10 <0.1N 0.0 0.0 0.0 0.0 >10N 33.6 26.0 23.9 26.9

500 10 <0.5N 29.9 22.3 15.3 12.0 >2N 40.7 36.6 36.4 40.4

500 5 <0.1N 2.1 0.0 0.0 0.1 >10N 44.6 39.9 38.4 38.9

500 5 <0.5N 38.0 33.2 30.0 24.5 >2N 47.7 45.6 45.7 45.5

Results are based on 1000 replicates using simulated data; S = sample size; L = number of gene loci, each with a maximum of 10 alleles per

locus, and Pcrit is the criterion for excluding rare alleles.

*For S = 25, results shown are for Pcrit = 0.03 rather than 0.02.

�S = 100 and Ne � 50 was approximated by using N = 100 with a skewed sex ratio (85:15).
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accumulated. This figure also illustrates an important

practical point: with the other parameters fixed, separately

doubling the sample size of individuals, number of loci,

or number of alleles per locus all lead to roughly the

same gains in precision. This theoretical result, which is

similar to a conclusion reached by Waples (1989) for the

temporal method, holds for a wide range of parameter

values (data not shown). The results for the parameter set

with L = 180, and K = 2 provide an indication of the

number of diallelic SNP loci required to achieve precision

comparable to that for a typical microsatellite dataset: 180

independent SNP loci would provide roughly the same

level of precision as 20 typical microsatellite loci with 10

alleles each.

Equation (3) and Fig. 1 assume a fixed number of

alleles per locus. In the simulated datasets, we specified

the maximum number of allelic states per locus (A) but

the actual number of segregating alleles (K) was a random

variable. Figure 2 shows how the total number of (pre-

sumably independent) allelic combinations (n) in the

simulated data varied with other input parameters.

n increased sharply as lower frequency alleles were admit-

ted into the computations and in general was about twice

as high for Pcrit = 0.05 as for 0.1 and about three times as

high for Pcrit = 0.02. Interestingly, for fixed values of L

and A, the number of useful allelic combinations was not

very sensitive to sample size or effective size (Fig. 2, top

panel). For specified values of N, S, and L, n was much

higher for A = 10 than A = 5 but did not increase much

more with a larger number of potential allelic states

(Fig. 2, middle panel). This result occurred because under

the simulated conditions, most populations were not able

to maintain much beyond 10 alleles per locus. With larger

populations (N > 500–1000), increasing A beyond 10 alle-

lic states did allow more alleles into the analysis, but the

effect was not large (data not shown). Increasing the

number of loci led to large increases in the number of

allelic combinations (Fig. 2, bottom panel), a result

directly attributable to the fact that the number of pair-

wise comparisons increases with the square of the number

of loci.

The practical consequences of varying input parameters

on the distribution of N̂e estimates are seen in Fig. 3.

With N = 100 and only moderate amounts of data

(S = 50; L = 10), most estimates clustered around 100

and only 0.3% were higher than 500. A much tighter
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distribution of N̂e, with virtually all estimates falling

between 50 and 150, was obtained with larger samples of

individuals and loci (S = 100; L = 40). The bottom panel

shows a much wider range of N̂e estimates for N = 1000

than N = 100. Under somewhat typical conditions

(S = 50 and L = 20), when true Ne was 1000 over a third

of the estimates were >2000. However, for N = 1000 only

1% of the N̂e were <300, and for N = 100 only 0.1% of

the N̂e were >300. Thus, when using the LD method with

an amount of data that it is currently possible to achieve

for many natural populations, one is not likely to mistake

a population with moderately small Ne for one with large

Ne.

A broader picture of practical applicability of the LD

method can be obtained by examining data in Table 2,

which shows the fraction of estimates that differ from N

by a factor of 2x or 10x. One major result clearly illus-

trated here is that lower portions of the distribution of

N̂e are much more constrained than upper portions. For

example, assuming a standard sample of 20 ‘microsat’ loci

and N = 500, even a sample of only 25 individuals is suf-

ficient to ensure that N̂e will almost never be <10% of N.

Conversely, with N = 500 and S = 25, about 25–30% of

the estimates exceeded 10N = 5000, depending on the

Pcrit value used.

Precision is also strongly affected by interaction

between sample size and effective size. When N is only

100, a sample of 25 individuals genotyped for 20 ‘micro-

sat’ loci is sufficient to ensure that only a small fraction

(1.6% for Pcrit = 0.03; Table 2) of N̂e estimates will be

less than half the true value. But with N = 500 and the

same sample size and Pcrit, about 25% of N̂e values will

be <0.5N. This table thus illustrates that, for numbers of

highly polymorphic loci typically available at present,

small samples on the order of 25 individuals can provide

meaningful information about effective size only for pop-

ulations that are not too large (Ne < about 500). The

practical value of small samples in the range S = 25 also

depends heavily on the number of loci and alleles. For

example, with only five ‘microsat’ loci typed, samples of

S = 25 do not produce reliable estimates of Ne even when

N is as small as 100 (most N̂e are either <<100 or >500;

Fig. 3A).

Finally, results in Table 2 emphasize that even with

large samples of individuals, the upper bound of N̂e is

not well defined if Ne is large. With N = 100 a sample of

50 individuals is sufficient to ensure that no N̂e values are

>10N, but with N = 1000 about 6% of estimates are

>10N even when based on sample sizes of 100, and for

N = 5000 even samples of 200 individuals produce a

quarter or more of estimates with N̂e > 10N. Increasing

the number of loci also helps precision (Table 2), but the

problem of placing an upper bound on N̂e for large pop-

ulations remains challenging.

Direct effects on precision when low-frequency alleles

are used are seen in the second panels in Figs 4 and 5.

For all values of N, CV(�̂r2)is highest for Pcrit = 0.1, drops

by about 40–50% for Pcrit = 0.05, and declines further

(but more modestly) for Pcrit = 0.02 and 0.01. This effect

is essentially independent of sample size.

Bias

We found an interaction between bias (indexed by the

ratio harmonic mean N̂e/N), S, and Pcrit (Figs 4 and 5).

In general, the LD method has little or no bias for

Pcrit ‡ 0.05, which is not surprising as the empirical bias

correction (Waples 2006) was developed for data that

excluded alleles at frequency <5%. As alleles with lower

frequency are allowed into the analysis, estimates become
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biased slightly upwards, and this effect is more pro-

nounced for smaller sample sizes (compare results for

S = 50, 100, and 200 with N = 1000 in Fig. 5). The pro-

gram Ldne implements a separate bias correction for

S < 30; this reverses the trend of increasing upward bias

with smaller samples and actually leads to a slight down-

ward bias for Pcrit ‡ 0.05 (Figs 4 and 5). However, this

small-sample correction is not effective at the lowest Pcrit

considered (0.01), which (in the case of S = 25) fails to

exclude any alleles, even those occurring in only a single

copy. For this sample size, use of Pcrit = 0.03, which

screens out singletons but allows all other alleles into the

analysis, led to essentially unbiased estimates of Ne for

N £ 1000 (Figs 4 and 5). The effect of allowing singletons

can also be seen for S = 50 in Figs 4 and 5, where

upward bias rises sharply for Pcrit = 0.01, a criterion that

allows alleles that occur only once in a sample of

2S = 100 genes.

Results presented in Figs 2, 4, and 5 thus illustrate an

inherent tradeoff between bias and precision: in general, a

lower Pcrit leads to estimates that are not only more pre-

cise but also more biased. MSE analyses (bottom panels

in Figs 4 and 5) are useful to review in this context.

Pcrit = 0.1 is clearly too conservative, sacrificing too much

precision for only modest benefits with respect to bias.

Otherwise, which Pcrit value leads to the lowest MSE

depends to some extent on S and N: with N = 100, Pcrit

in the range 0.03–0.05 led to the lowest MSE, depending

on sample size, whereas with N = 1000 the most extreme

Pcrit (0.01) produced the smallest MSE.

We found no appreciable effect of the number of loci

on bias (data not shown). The maximum number

of alleles per locus had little effect over the range

A = 10–40, but upward bias in N̂e was largely eliminated

with A = 5 (data not shown). Presumably, this occurred

because A = 10 was sufficient to saturate our populations

with rare alleles, whereas with only five alleles per locus

most alleles remained at intermediate frequencies.

Pcrit

C
V

 r
2

0.00

0.01

0.02

0.03

0.04

N
e

/N

0.8

1.0

1.2

1.4
S =   25
S =   50
S = 100

^
^

0.000.020.040.060.080.10

S
ca

le
d 

M
S

E
 r

2

1

2

3

N = 100
^

(A)

(B)

(C)

Figure 4 Indices of precision and bias for estimates of Ne for simu-

lated data, plotted as a function of sample size (S) and the criterion

for excluding rare alleles (Pcrit). Results shown used 20 loci with a

maximum of 10 alleles per locus, and population size was N = 100.

(A) Bias in harmonic mean N̂e; dotted line shows unbiased expectation

N̂e=N = 1.0. (B) Coefficient of variation (CV) of r̂2, measured across

1000 replicate �̂r2 values computed as means across all 20 gene loci.

(C) Mean-squared error (MSE) of �̂r2, scaled within each sample size so

that the lowest MSE = 1.0.

Pcrit

C
V

 r
2

0.00

0.01

0.02

0.03

N
e

/N

0.8

1.0

1.2

1.4

1.6
S =   25
S =   50
S = 100
S = 200

^
^

0.000.020.040.060.080.10

S
ca

le
d 

M
S

E
 r

2

1

2

3

4

N = 1000

^

(A)

(B)

(C)

Figure 5 As in Fig. 4, but with N = 1000.
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Collectively, results discussed above and for other

parameter sets we considered suggest the following practi-

cal ‘rule of thumb’ for balancing the precision–bias trade-

off for the LD method: choose Pcrit to be the larger of

0.02 or a value that screens out alleles that occur in only

one copy. Operationally, this rule can be expressed as

follows:

For S > 25: choose Pcrit = 0.02.

For S £ 25: choose so that 1/(2S) < Pcrit £ 1/S.

Adoption of this simple rule can be expected to lead to

largely unbiased estimates of Ne that have relatively high

precision under a wide range of conditions (Fig. 6). If

this rule is followed, most realistic situations should pro-

duce estimates of Ne with bias <10% or so – a relatively

small effect considering the various other sources of

uncertainty associated with biological systems. Because

rare alleles cause less upward bias in N̂e for large S, if

sample size is about 100 or larger users might consider

using Pcrit = 0.01 to maximize precision with relatively

little cost in terms of bias. This might be particularly

effective in situations where population size is thought to

be large, in which case adequate precision is difficult to

achieve without a great deal of data. Note, for example,

that with N as large as 5000, estimates based on samples

<100 individuals become highly unreliable (Fig. 6).

Confidence intervals

Although confidence intervals to N̂e are easy to calculate

for the LD method, they are complicated to evaluate. To

illustrate, consider an idealized scenario in which the

point estimate is unbiased (harmonic mean N̂e = N) and

95% of the 95% CIs contain the true value of Ne, which

is fixed and equal to N every replicate. Practical realities

lead to several types of departures from this ideal

scenario.

Problem 1

Parametric CIs for the LD method are based on the

observation that a function of r̂2 is distributed approxi-

mately as chi-square with n degrees of freedom: CV2(�̂r2)�
2/n (Hill 1981), with n defined as in eqn (1). However,

this formulation assumes that the L(L)1)/2 pairwise com-

parisons among loci are all independent, which is not

strictly true; correlations among overlapping pairs of loci

(e.g., locus 1 with locus 2 and locus 1 with locus 3) vio-

late this assumption (Hill 1981). As a consequence, vari-

ance of mean �̂r2 does not decrease as fast as the

theoretical expectation when additional loci are used, and

parametric confidence intervals based on the chi-square

approximation (Equation 12 in Waples 2006) do not con-

tain the true value the expected fraction of the time when

many loci are used.

Problem 2

If N̂e is biased, CIs computed for replicate point estimates

will tend to perform poorly because they are generated

around the biased point estimates but are being com-

pared to the unbiased (true) value of Ne. For example, if

the estimator is biased toward high values (as occurs for

the LD method with some combinations of N, S, and

Pcrit), the entire CI will be above the true value a dispro-

portionate fraction of the time.

Problem 3

A somewhat related phenomenon, recently described by

Waples and Faulkner (2009), is that when one explicitly

models a Wright–Fisher ‘ideal’ population (e.g., in a com-

puter model that tracks multilocus genotypes), the real-

ized effective size in each replicate (Ne*) only rarely, and

only by chance, equals the nominal ‘true’ value of N. This

is because in the Wright–Fisher model, the realized vari-

ance among individuals in genes contributed to the next

generation (Vk*) is a random variable; effective size equals

N only when Vk* is exactly equal to the binomial expecta-

tion E(Vk) = 2(N)1)/N, so in most replicates Ne* is

higher or lower than N because Vk* „ 2(N)1)/N. This

effect is small if N is large but can be important even for

N = 100, in which case realized Ne* typically varies

between about 80 and 120 (± about 20%) across replicate

generations in modeled ideal populations (Waples and

Faulkner 2009). As a consequence of this effect, perfor-

mance evaluations of CIs in modeled populations will

tend to be overly pessimistic because they do not account

for random variation in realized Ne*.
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Figure 6 Bias in harmonic mean N̂e across replicate populations as a

function of population size (N) and sample size (S). Dotted line shows

unbiased expectation N̂e=N = 1.0. Results shown used 20 gene loci

with a maximum of 10 alleles each, and the criterion for excluding
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To recap, Problem 1 means that parametric CIs for the

LD method will tend to be slightly too narrow, with the

effect being more pronounced for large numbers of loci.

Problems 2 and 3 remain even if the CIs have the appro-

priate width; these problems arise because the CIs are off-

set from the ‘true’ value of Ne. In Problem 2, the offset is

a real bias and occurs consistently in one direction. In

contrast, in Problem 3 the offset is not a bias but instead

is due to random differences between realized Ne* and

what is assumed to be the true, constant value Ne = N.

Interestingly, and importantly, Problems 2 and 3 are both

more acute with large amounts of data (high S, L, K).

With only modest amounts of data, CIs will be wide and

will (by chance) include N a large fraction of the time,

even with bias in N̂e (Problem 2) or random variation in

Ne* (Problem 3). However, as more and more data are

brought into the analysis, the CIs will become narrowly

focused on the biased point estimate N̂e (Problem 2) or

the realized value of Ne* that applies to that particular

replicate generation (Problem 3). In both cases, the

resulting CIs will include N a smaller and smaller fraction

of the time as information content increases. In contrast

to Problem 1, which is specific to the LD method because

it arises from a lack of independence of overlapping pairs

of loci, Problems 2 and 3 are more generic and apply as

well to confidence intervals for other Ne estimators.

What are practical implications of these factors? Waples

and Do (2008) proposed a jackknife method to empiri-

cally estimate the variance of �̂r2 and modify parametric

LD confidence intervals accordingly, which should

address Problem 1 given an adequate number of loci to

compute a jackknife estimate. Problem 3 complicates

evaluation of performance of CIs with simulated data,

which is one reason we do not provided detailed evalua-

tions of CIs in this study. However, this problem arises

from a type of pseudoreplication inherent to simulated

data (Waples and Faulkner 2009) and therefore ceases to

be a problem when considering data from natural popu-

lations, where each sample has associated with it only one

realized Ne*, which is the parameter of interest. Problem

2 is therefore of most immediate concern for those inter-

ested in placing confidence limits on estimates of Ne in

natural populations. The best approaches are to 1) pick a

method that is unbiased, or 2) accept a small degree of

bias in exchange for greater precision, recognizing that

the resulting CIs might exclude the true Ne a higher-

than-expected fraction of the time (even if the width of

the CIs is appropriate).

The LD method versus the temporal method

Equations (3) and (4) allow a theoretical comparison of

precision of the LD method and the moment-based tem-

poral method. For both estimators, CV(N̂e) is inversely

related to the number of degrees of freedom; this is gen-

erally larger for the LD method because as the numbers

of loci and alleles/locus increase, n increases as the square

of L and K while the temporal n¢ increases only linearly

with L and K (compare eqns 1 and 5). Thus, we expect

that precision should increase more rapidly for the LD

method as more loci and alleles are used. Conversely, in

the temporal method CV(N̂e) declines with increasing

time between samples (eqn 4), while this parameter does

not affect LD estimates. Finally, although precision in

both methods is lower for larger N, the coefficient for the

Ne term is smaller for the temporal method (eqn 4) than

for the LD method (eqn 3), indicating that precision for

the temporal method should not decline as rapidly with

increases in population size. These diverse and contrasting

effects can be quantified by considering the ratio of the

coefficients of variation for N̂e (CVLD/CVT). As the tem-

poral method requires two samples of size S, to standard-

ize the comparison we assumed a single sample of size 2S

for the LD estimates (see Wang 2009, for a comparable

adjustment for comparisons of two-sample and one-sam-

ple methods). With this adjustment and assuming K is

constant, after combining eqns (3) and (4), expanding

the expressions for n and n¢ using eqns (1) and (5), and

simplifying, yields:

CVLDðN̂eÞ
CVTðN̂eÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ðL� 1ÞðK � 1Þ

s
Sþ 1:5Ne

Sþ ð2=tÞNe

� �
: ð6Þ

With this formulation, values of the ratio >1 indicate

that the temporal method has greater precision, while the

LD method is more precise when the ratio <1. Obviously,

this analysis is only meaningful for L ‡ 2 (a minimum of

two loci are required for the LD method) and K ‡ 2

(monomorphic loci provide no information). It is easy to

see that the first term in eqn (6) will be 1 if L,K = (3,2)

or (2,3), and the ratio will be < 1 if either L or K >3.

The numerator and denominator of the second term will

be equal when t = 1.33 generations, and the numerator

will be larger if the time between samples exceeds this

value.

These effects are illustrated for some representative

parameter combinations in Fig. 7. Relative performance

of the temporal method increases (higher ratio) when (i)

more generations elapse between samples (compare

results for t = 2 and 10 for L = 5 loci, K = 5 alleles and

L = 20, K = 10); (ii) smaller samples are used (compare

results for S = 25 and 50 for L = 20, K = 10); and larger

populations are involved (consistently higher ratios for

N = 500 and 1000 than for N = 100). Conversely,

Precision and bias of LD estimates Waples and Do

252 ª 2009 Blackwell Publishing Ltd 3 (2010) 244–262



increasing L and K has a dramatic effect on reducing

CVLD, leading to low values of the ratio. The only param-

eter combination for which overall precision was better

for the temporal method involved modest amounts of

data (five loci with five alleles each) and a relatively long

time (10 generations) between samples. For the other

(arguably more realistic) parameter combinations, preci-

sion of the LD method was higher, and often a great deal

higher. For example, with 20 ‘microsat’ loci with 10

alleles each or 180 diallelic ‘SNP’ loci, CVLD was a third

lower than CVT with N = 1000 and over two-thirds lower

with N = 100 (Fig. 7).

These results should be regarded as only a general indi-

cation of relative precision of the two methods. Various

estimators used in the temporal method have different

variance properties, providing some opportunities to

trade off precision and accuracy (Jorde and Ryman 2007).

Furthermore, likelihood-based (Wang 2001) or approxi-

mate Bayesian computation (ABC; Tallmon et al. 2004)

temporal methods should have lower variance than

moment-based estimators, at least if their underlying

assumptions are satisfied. Nevertheless, the general

patterns observed here should be fairly robust. Notably,

Wang (2009, Fig. 1) found qualitatively similar results in

comparing his pseudo-likelihood temporal method to a

new single-sample estimator (discussed below): the tem-

poral method performed poorly for low t but eventually

outperformed the single-sample estimator if the temporal

samples were spaced a large enough number (t = 16–32)

of generations apart, and doubling the number of loci led

to larger increases in precision of the single-sample

method.

Discussion

It seems clear that previous efforts to estimate effective

size in natural populations have not extracted as much

information as possible from genetic data. Any applica-

tion of the temporal method that collects multilocus

genotypic data provides an opportunity to obtain at least

two estimates of Ne from individual generations using

the LD method or one of the other single-sample estima-

tors, but relatively few have taken advantage of this

opportunity.

The simulation program used here (EasyPop) differs

in some important ways from the one used to generate

data to develop the empirical bias correction for the LD

method (Waples 2006). In particular, the original pro-

gram had no mutation and considered only diallelic loci

at moderate allele frequency, whereas EasyPop has an

explicit mutation model and generates data with a wide

range of allele frequencies and numbers of alleles per

locus. The new simulated data thus represent an inde-

pendent assessment of the bias-corrected LD estimator –

and a more realistic assessment of performance

with highly polymorphic markers currently in wide-

spread use. In summarizing important results of our

evaluations, we return to the specific questions posed in

the Introduction before closing by discussing a few

related issues.

Factors affecting precision and bias

The LD method benefits from the fact that the amount of

information increases with the square of the numbers of

loci and alleles, so efforts to capitalize on ready availabil-

ity of highly variable markers can pay large dividends.

Within the range of values of practical interest to most

investigators, the same proportional increases in numbers

of loci, alleles per locus, or individuals sampled should

have roughly comparable effects on precision, and this

result (along with the quantitative expression for CVLD in

eqn 3) can be used to guide experimental design deci-

sions. Although each SNP locus provides much less preci-

sion than a typical microsatellite, this can be overcome by

brute force if enough new independent loci can be devel-

oped. Figure 1 indicates that about 180 SNP loci can be
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Figure 7 Theoretical precision of the LD and temporal methods for

various combinations of parameters. Values on the Y-axis are ratios of

coefficients of variation of N̂ for the LD method [CVLD(N̂e) from

eqn 3] and the temporal method [CVT(N̂e) from eqn 4]. The dotted
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the two methods. Points above the line indicate greater precision for

the temporal method, points below the line greater precision for the
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of individuals (S), number of loci (L), number of alleles per locus (K),

and number of generations between samples (t, temporal method

only). Results for the temporal method assume two samples each of

size S and results for the LD method assume a single sample of size

2S.
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expected to provide precision comparable to that attained

by about 10–20 typical microsatellite loci; this might seem

like a lot, but techniques to develop thousands of SNP

loci are rapidly advancing and declining in cost (Morin

et al. 2004; Xu et al. 2009). As discussed below (Key

assumptions), however, an application using a very large

numbers of SNP loci should be accompanied by a careful

analysis of assumptions of independence and neutrality.

Rare alleles tend to upwardly bias LD estimates of Ne,

just as they do for the temporal method (Turner et al.

2001), but in many cases the effect is not too severe. This

means that large numbers of alleles typically can be

allowed into the analysis to boost precision without sub-

stantially increasing bias. For most applications, a good

rule of thumb is to screen out any alleles at frequency

<0.02, as well as any alleles that occur in only a single

copy in the sample (see Nielsen and Signorovitch 2003,

for discussion of effects on r̂2 of using singletons from

SNP data). Using this criterion, something close to maxi-

mum precision can be achieved while (in most cases)

keeping bias to less than about 10% (Fig. 6). With large

samples (S � 100 or larger), alleles with frequency as low

as 0.01 can probably be used.

Practical applications

All genetic methods for estimating contemporary N̂e

depend on a signal that is a function of 1/Ne, so these

methods are most powerful with small populations (for

which the signal is strong) and have difficulty distinguish-

ing large populations from infinite ones (because the

signal is so small). This effect is amply demonstrated for

the LD method in Figs 1 and 3 and Table 2. With

amounts of data commonly available today (samples of

about 50 individuals; 10–20 microsatellite-like loci), quite

good precision can be obtained for populations with rela-

tively small effective sizes (about 100–200 or less). For

very small populations (Ne less than about 50), small

samples of only 25–30 individuals can still provide some

useful information. These results are encouraging, as con-

servation concerns typically focus on populations that are

(or might be) small, and modern molecular methods have

facilitated an increasing interest in studying evolutionary

processes in local populations in nature.

In contrast, estimating effective size with any precision

in populations that are large (Ne � 1000 or larger) is very

challenging. In general, a small sample of individuals (or

a moderate or large sample based on only a few gene

loci) will not provide much useful information about Ne

in large populations, and even with relatively large sam-

ples of individuals and loci it might not be possible to

say much about the upper bound to N̂e. In theory, with

arbitrarily large numbers of loci and alleles (as might

routinely be achievable in the future), it should be possi-

ble to produce estimates that place tight bounds even on

the upper limit to N̂e in large populations (cf. Fig. 1).

However, because the drift signal is so small for large

populations, researchers who want to estimate Ne in

populations that are or might be large should pay careful

attention to various sources of noise in the analysis (slight

departures from random sampling; data errors; violation

of underlying model assumptions) that can have a dispro-

portionate effect on results. In this respect, estimating

contemporary Ne in large populations using genetic

markers is as challenging as, and suffers many of the same

intrinsic limitations as, genetic estimates of dispersal in

high gene flow species (Waples 1998; Fraser et al. 2007).

Fortunately, because the LD signals for large and small

populations are quite different (Fig. 3), estimates based

on even moderate amounts of data should be able to

provide a useful lower bound for Ne, and this can be

important, particularly in conservation applications where

a major concern is avoidance and/or early detection of

population bottlenecks.

Based on extensive computer simulations, Russell and

Fewster (2009) reached a rather pessimistic conclusion

about practical usefulness of the LD method. However,

two factors make their results difficult to interpret in the

present context. First, they presented quantitative results

only for the original LD method (Hill 1981) which, when

the ratio S/Ne is small, has been shown to produce an

estimate that is more closely related to the sample size

than to the true effective size (England et al. 2006; Waples

2006). Second, Russell and Fewster (2009) assessed bias

by comparing arithmetic mean N̂e to the true Ne. Because

of the inverse relationship between r̂2 and N̂e (eqn 2a),

this has the unfortunate consequence that if r̂2 is a com-

pletely unbiased estimator of r2, arithmetic mean N̂e will

be upwardly biased. Results in Table 2 and Figure 3 show

how upwardly skewed the distribution of N̂e can be, in

which case the arithmetic mean is not a useful indicator

of central tendency. Here, we have followed the approach

used by Nei and Tajima (1981), Pollak (1983), Waples

(1989), Jorde and Ryman (2007), Nomura (2008), and

Wang (2009), all of whom evaluated bias in terms of har-

monic mean N̂e (or, equivalently, used the overall mean

r̂2 or temporal F̂ across replicates to compute an overall

N̂e). Importantly, this approach can readily accommodate

negative or infinite N̂e values in individual replicates (see

next section).

Negative estimates and nonsignificant LD

As shown in eqn (2a), before estimating Ne in the LD

method, the expected contribution of sampling error is

subtracted from the empirical r̂2. If Ne is large, or if only
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limited data are available, by chance mean r̂2 can be

smaller than the sample size correction, in which case the

estimate of Ne will be negative. A related phenomenon

can occur with the standard temporal method (Nei and

Tajima 1981; Waples 1989) and with unbiased estimators

of genetic differentiation (Nei 1978; Weir and Cockerham

1984). Negative estimates occur when the genetic results

can be explained entirely by sampling error without

invoking any genetic drift, so the biological interpretation

is N̂e = ¥ (Laurie-Ahlberg and Weir 1979; Nei and Taj-

ima 1981). In this situation, the user can conclude that

the data provide no evidence that the population is not

‘very large’. However, even if the point estimate is nega-

tive, if adequate data are available the lower bound of the

CI generally will be finite and can provide useful informa-

tion about plausible limits Ne.

Many software packages provide tests of statistical sig-

nificance of LD for each pair of loci or across all loci.

Although these tests vary in the way they assess signifi-

cance and combine information across multiple alleles

and loci, in general they are testing the hypothesis that

the observed LD can be explained entirely by sampling

error. A nonsignificant test for LD, therefore, indicates

that the null hypothesis (H0: r̂2 £ 1/S) cannot be rejected,

which implies that the upper bound of N̂e would include

infinity. That is, a nonsignificant test provides no evi-

dence for drift, which is not the same as saying no drift

occurs (in fact, all finite populations have some contribu-

tion to r̂2 from drift, and, assuming the test is valid, that

drift component should become statistically significant if

enough data are collected). So, for reasons discussed in

the previous paragraph, even a dataset with a nonsignifi-

cant LD result can potentially provide useful information

about effective population size.

Key assumptions

Like other Ne estimators, the LD method assumes that of

the four evolutionary forces (mutation, migration, selec-

tion and genetic drift), only drift is responsible for the

signal in the data. Although mutation rate strongly affects

estimates of long-term Ne, it probably is of little conse-

quence for the LD method, apart from its role in produc-

ing genetic variation. Selection can cause nonrandom

associations of genes at different gene loci, just as it can

influence rates of allele frequency change, but it might be

reasonable to assume that it has relatively little influence

on LD measured in microsatellite loci. The neutrality

assumption should be evaluated more rigorously,

however, if large numbers of SNP loci are used. Vitalis

and Couvet (2001) proposed a method to jointly esti-

mate Ne and migration rate. Immigration of genetically

differentiated individuals from other populations leads to

mixture disequilibrium (Nei and Li 1973) that could

downwardly bias LD estimates of local Ne; conversely,

high migration rates among weakly differentiated popula-

tions could cause local samples to provide an estimate

closer to the metapopulation Ne than the local Ne

(because the sample is drawn from a larger pool of

potential parents). Unpublished data (P. England, per-

sonal communication) indicate that under equilibrium

migration models, the former effect is small and the latter

effect is substantial only for migration rates that are high

in genetic terms (�10% or higher) – suggesting that

under many natural conditions the LD method can

provide a robust estimate of local (subpopulation) Ne.

However, upward biases in N̂e might be more important

in small subpopulations that are part of a metapopula-

tion, as in that case even a few migrants per generation

could represent a relatively high migration rate.

The LD method as implemented here assumes that loci

are independent (probability of recombination = 0.5).

This is probably a reasonable assumption in most current

situations, given the numbers of markers typically used in

studies of natural populations. However, some taxa (e.g.,

Drosophila) have only a few chromosomes and/or regions

of the genome in which recombination is suppressed, and

in the future LD estimates might be generated using

thousands of SNP or other markers. In such cases, there-

fore, issues related to recombination rate would have to

be re-evaluated. Linked markers actually provide more

power, providing the recombination rate is known (Hill

1981). The LD method provides information primarily

about Ne in the parental generation, but residual disequi-

librium from a recent bottleneck can affect the estimate

for a few generations (Waples 2005, 2006). If loci are clo-

sely linked, estimates from the LD method will be more

strongly influenced by Ne in the distant past (see Tenesa

et al. 2007, for an application to human SNP data).

The theoretical relationship between r̂2 and Ne assumes

either random mating without selfing or random mate

choice with lifetime monogamy (Weir and Hill 1980;

Waples 2006). The populations do not have to be ideal;

the method still performs well with highly skewed sex

ratios and overdispersed variance in reproductive success

(Waples 2006). However, strongly assortative mating or

widespread selfing would be expected to lead to biases

that have not been quantitatively evaluated. Genotyping

errors can also affect estimates of LD (Akey et al. 2001).

Russell and Fewster (2009) found an upward bias in N̂e

for the standard LD method (Hill 1981) when 1%

allelic dropout was modeled, and this topic bears further

study.

Finally, the underlying model for the LD method

assumes discrete generations, and this is the only situa-

tion where the resulting estimate can be interpreted as
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effective size for a generation (Ne). Most natural popula-

tions do not have discrete generations; when samples are

taken from age-structured species, the resulting estimate

from the LD method can be interpreted as an estimate of

the effective number of breeders (Nb) that produced the

cohort(s) from which the sample was taken. The rela-

tionship between N̂b and Ne in age-structured species

has been evaluated for the temporal method (Waples

and Yokota 2007), but comparable evaluations have not

been made for any single-sample estimator. A reasonable

conjecture is that if the number of cohorts represented

in a sample is roughly equal to the generation length,

the estimate from the LD method should roughly corre-

spond to Ne for a generation, but this remains to be

tested.

Comparison with other methods

As illustrated in Fig. 7, with samples of individuals, loci,

and alleles routinely available today, the LD method

should generally provide better precision than the tempo-

ral method, unless samples for the latter are spaced a

large number of generations apart.

Several other one-sample estimators of Ne have been

proposed, although direct comparisons of performance

have generally not been made with the LD method. The

heterozygote excess method is generally much less precise

than other single-sample estimators (Nomura 2008; Wang

2009) and is best suited for analyzing small populations

of species with Type III survivorship for which large sam-

ples of offspring are possible (Hedgecock et al. 2007; Pud-

ovkin et al. 2009). A single-sample ABC estimator

(OneSamp; Tallmon et al. 2008) appears to have consider-

able potential but has not been rigorously evaluated

under a wide range of conditions and assumes a specific

type of mutation model that makes it useful only for

microsatellite data. Two new methods, based on the

analysis of molecular coancestry (Nomura 2008) and

identification of full and half sibs (Wang 2009), each

included some comparisons with some other Ne estima-

tors. However, Nomura only considered populations with

tiny Ne (<15) and only compared his new method to the

heterozygote excess method, which was also the only

single-sample estimator that Wang (2009) compared his

new method to with simulated data.

Nevertheless, Wang did provide results for some analy-

ses that are comparable enough to those conducted here

that a quantitative comparison of the LD method and the

sibship method is possible for a few parameter combina-

tions. In Table 5 of his paper, Wang (2009) reported the

root mean-squared error (
ffiffiffiffiffiffiffiffiffiffi
MSE
p

) for the quantity

1=ð2N̂eÞ for simulations using random mating popula-

tions of constant size with equal sex ratio and 10–40 gene

loci with eight alleles of initial equal frequency. That

analysis involved a comparison with temporal samples

taken in generations 3 and 5, so to get a single sibship-

based estimate for each replicate Wang computed an esti-

mate for both generations and took the average. For the

parameters N = 200, S = 50, L = 20,
ffiffiffiffiffiffiffiffiffiffi
MSE
p

for the

sibship method was 0.0005. To allow a comparison, we

simulated populations as described in Methods with

N = 200, L = 20, A = 8, and drew samples after 10 gener-

ations – long enough for levels of LD to stabilize. The

version of EasyPop we used does not allow sampling in

two different generations, so we used the approach

described above of taking a single sample of twice the size

(i.e., we sampled 100 individuals once rather than 50

individuals twice). All else being equal, the two sampling

schemes should provide roughly comparable precision.

For our simulated datasets, we found that
ffiffiffiffiffiffiffiffiffiffi
MSE
p

of

1=ð2N̂eÞ was 0.0004, slightly lower than the value reported

by Wang for his one-sample method and considerably

less than the value he found (0.0015) for temporal sam-

ples separated by two generations. For the same set of

simulated populations and sample size S = 100 (two sam-

ples of 100 for the sibship method, one sample of 200 for

the LD method), we found
ffiffiffiffiffiffiffiffiffiffi
MSE
p

of 0.00025 compared

to 0.0003 reported by Wang. It would be a mistake to

place too much emphasis on these results, given that tab-

ular values in Wang (2009) are rounded off and that the

direct comparisons that are possible cover only a small

fraction of potential parameter space. Nevertheless, these

data suggest that LD and sibship one-sample methods

might have roughly comparable levels of performance as

measured by some common indicators. A comprehensive

comparison of performance of the LD, coancestry, and

sibship methods would be useful.

Combining estimates across methods

Researchers who have reported estimates of Ne from more

than one method too often have not taken advantage of

another opportunity to increase precision – combining

the estimates into a single estimator. Because all the esti-

mators respond to a signal that is inversely related to Ne,

an appropriate way to combine estimates across methods

would be to take a weighted harmonic mean (Waples

1991). Ideally, the weights would be reciprocals of vari-

ances, which can be obtained for the moment-based LD

and temporal methods from eqns (3) and (4), respec-

tively. Combining data for these two methods could be

particularly useful for large populations, as the temporal

method is somewhat less sensitive to large N. Appendix A

provides a worked example of how effective size estimates

can be combined, both within and across methods. Addi-

tional work would be needed to determine the most
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appropriate way to weight estimates from different single-

sample estimators. However, Nomura (2008) showed that

considerable improvements in performance can be

obtained even by taking an unweighted harmonic mean

of N̂e from the heterozygote excess and molecular coan-

cestry methods.

Some cautions are important to keep in mind here.

First, which time period(s) each estimate applies to needs

careful consideration. Each of the single-sample estima-

tors is most closely related to inbreeding Ne and provides

an estimate of the effective number of breeders (Nb) that

produced the sample (Waples 2005). Combining esti-

mates from single-sample methods should therefore be

straightforward, provided an appropriate weighting

scheme can be developed. However, in general the single-

sample and temporal methods do not provide estimates

of Ne in exactly the same generations (Waples 2005).

Each single-sample estimate relates to Ne in a single gen-

eration (or Nb for a particular time period), while a tem-

poral estimate depends on the harmonic mean Ne in the

entire interval spanned by the samples. If Ne does not

vary too much over time and the primary interest is an

overall estimate of effective size for the population, then

it might be reasonable to simply combine the temporal

and single-sample estimates with appropriate weights as

discussed above. However, if the primary interest is Ne in

specific generations, which might vary considerably, then

careful consideration is needed to determine whether

combining estimates is desirable.

Second, the benefits of combining estimates depend on

the degree to which they provide independent information

about effective size. Based on unpublished data cited by

Waples (1991), the LD and temporal methods are

essentially independent, but correlations among the other

estimators have not been determined. Conducting these

evaluations should be an important research priority.

Third, the different Ne estimators generally depend on

similar, but not identical, suites of assumptions (as dis-

cussed above). It will generally be the case that not all of

these assumptions are completely satisfied in any particu-

lar dataset, and the different estimators might behave in

different ways in response to violation of these assump-

tions. Researchers should think carefully before combin-

ing estimates in cases for which good reasons exist to

believe some key assumptions are strongly violated.
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Appendix A: Combining different estimates of
effective size

Before attempting to combine different estimates of effec-

tive size, one should consider two questions posed at the

end of the Discussion: Do the estimates apply to the same

time period, or (if not) are they estimating the same

‘average’ quantity? And, Is it likely that violation of

underlying assumptions has differentially affected some of

the estimates? Assuming that it is reasonable to compute

a combined estimate, two related issues must be consid-

ered: how to combine estimates of the same type (single-

sample or temporal), and how to combine estimates

across methods. These issues are discussed below in the

worked example, but before doing so we describe two

general principles that should be followed.

First, in combining estimates the harmonic mean

should be used, for two reasons: (i) The distribution of

N̂e can be highly skewed, in which case the arithmetic

mean is not a useful indication of central tendency. In

addition, it is problematical to take an arithmetic mean

of a series that can include values that are negative or

infinite. (ii) Taking the harmonic mean of a series of N̂e

values based on r̂2 is mathematically equivalent to taking

the arithmetic mean of the r̂2 and using that to estimate

N̂e. It is easy to show analytically that this is true in gen-

eral, and the general principle can be illustrated with a

simple example. Assume one has three LD estimates of

Ne, all based on samples of S = 50 individuals and com-

parable numbers of loci and alleles. Assume also that the

mean r̂2 values for the three samples are as follows:

0.04, 0.015, 0.025. In that case, a reasonable approach

would be to calculate an overall mean r̂2 as

(0.04 + 0.015 + 0.025)/3 = 0.02667; this is exactly analo-

gous to the way a mean r̂2 is obtained for a single sample

by averaging r̂2 across many pairs of alleles. Use of

r̂2 = 0.02667 along with S = 50 in Equation 2a leads to

N̂e = 1/[3*(0.02667)0.02)] = 50. We can compare this

with the method that computes a separate N̂e for each

sample and takes their harmonic mean. In that case, and

again using Equation 2a for simplicity rather than the

more complicated bias corrected expectations (Waples

2006), the three N̂e estimates become 16.667, )66.667,

and 66.667. Although some popular software programs

won’t compute the harmonic mean of a series that

includes a negative number, this is easily accomplished

using the simple formula

~̂Ne ¼
jPj

i¼1

1=N̂eðiÞ
� � ; ðA1Þ

where j is the number of estimates. Note that this pro-

duces a result identical to that obtained by first averaging

the individual r̂2 values: ~̂Ne ¼ 3=ð1=16:667þ 1=66:667

�1=66:667Þ = 50. In this situation, the arithmetic mean

N̂e does not produce a sensible result, and simply ignor-

ing infinite or negative estimates leads to downward bias

in the composite estimate of Ne.

The other general principle to follow in combining esti-

mates is that, whenever possible, the individual estimates

should be weighted, with higher weights used for more

precise estimates. Ideally, this would be done by making

the weights proportional to reciprocals of variances. If a

series of estimates N̂eðiÞ are to be combined, and if Vi is

the variance of N̂e for the ith estimate, then the appropri-

ate weights are

W1 ¼
1=V1Pj

i¼1

1=Vi

;W2 ¼
1=V2Pj

i¼1

1=Vi

; . . .Wj ¼
1=VjPj

i¼1

1=Vi

: ðA2Þ

The weighted harmonic mean N̂e then is computed as

~̂NeðWeightedÞ ¼
1Pj

i¼1

Wi=N̂eðiÞ

: ðA3Þ

A worked example

To illustrate these principles, we consider a subset of the

data presented by Saarinen et al. (2009) for the Miami

blue butterfly (Cyclargus thomasi bethunebakeri). We focus

on the natural population BHSP, which was sampled in

both 2005 and 2006 (S = 24 and 39 individuals, respec-

tively), during which time an estimated t = 8 generations

elapsed. These two samples were used to estimate Ne

using three variations of the temporal method: the stan-

dard moment-based estimator (Waples 1989); another

moment-based estimator using a modified formula for

the temporal variance F (Jorde and Ryman 2007); and a

pseudo maximum-likelihood estimator (Wang 2001). In
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addition, each of the samples was used to estimate Ne

using two different single-sample estimators: the

moment-based estimator LDNe and the ABC estimator

OneSamp. Table A1 shows the N̂e estimates reported by

Saarinen et al. (2009). For simplicity, we show only the

LDNe estimates that used PCrit = 0.02 and the OneSamp

results with priors for Ne of 6-500 (the authors consid-

ered other variations, but results did not differ dramati-

cally).

Combining estimates within a method

The first step is to combine estimates within a method,

and we begin with the two single-sample estimates.

Although Hill (1981) provided an approximation for

VarLDðN̂eÞ based on the LD method, a comparable

expression is not available for the ABC method. In that

situation, and absent any other quantitative way of assess-

ing relative precision of the estimates, one can take an

unweighted harmonic mean of the two values (equivalent

to using j = 2 and setting both weights to 0.5 in Equation

A3). Results are shown in Table A1: ~̂NeðSS;2005Þ = 28.2 is

the unweighted harmonic mean of the two single-sample

estimates (23.8, 34.7) for 2005 and ~̂NeðSS;2006Þ = 32.3 is

the comparable result for 2006.

If one wants to combine single-sample and temporal

estimates (see next section), one first has to compute an

overall ~̂NeðSSÞ that applies to both of the single samples.

We compute a weighted harmonic mean based on the

theoretical variance of N̂e in the two time periods, using

a simple modification of Equation 3 to compute the

weights:

VarLDðN̂eÞ �
2N2

e

n
1þ 3Ne

S

� �2

: ðA4Þ

This variance applies specifically to the LD method, but

for lack of quantitative information regarding precision of

the ABC method we use it for the combined LDNe +

OneSamp estimates as well. Two factors differ between

the 2005 and 2006 samples relevant to this variance: sam-

ple size (larger in 2006; Table A1) and number of allelic

combinations (n = 715 in 2005 and 640 in 2006; Saarinen

et al. 2009). Inserting these values into Equation A4 and

setting Ne = 30.1 (unweighted harmonic mean over the

2 years) produces VarLDðN̂eÞ= 58 for 2005 and 31 for

2006. Using Equation A2 the weights thus become

W2005 = 0.35 and W2006 = 0.65 and the weighted har-

monic mean single-sample estimate (from Equation A3)

thus becomes
~̂NeðSSÞ = 1/(0.35/28.2 + 0.65/32.3) = 30.7.

The temporal method produces a single estimate that

applies to the time period spanned by the samples, and

the three different estimates obtained by Saarinen et al.

(2009) are shown in Table A1. It is apparent that the two

moment-based estimates are similar to the single-sample

estimates, while the ML estimate is an order of magnitude

higher. Jorde and Ryman (2007) found their revised esti-

mator less biased but also less precise than the standard

method, so it might be possible to develop a quantitative

weighting for combining those two moment-based

estimates. However, an expression for VarMLðN̂eÞ is not

available, so for simplicity we use an unweighted

approach. Biological considerations suggest three different

strategies for doing this.

Strategy 1: Treat each estimate independently with

equal weight and take an overall harmonic mean. With

the three weights equal at Wi = 0.333, use of Equation A3

gives the harmonic mean temporal estimate as

~̂NeðT;Strategy1Þ ¼
1

0:333=20:9þ 0:333=28þ 0:333=322
¼ 34:6

Strategy 2: The two moment-based estimators might be

considered to be largely redundant, so they could be

Table A1. Combining estimates of Ne within methods (single-sample or temporal).

Time S

Temporal

Single-sample Moment

LD ABC ~̂Ne W JR ML

2005 24 23.8 34.7 28.2 20.9 28 322

2006 39 35.9 29.3 32.3

HMean 29.7 30.7* 23.9� 44.6�

*Harmonic mean single-sample estimate for 2005 and 2006 combined ( ~̂NeðSSÞ) weighted by sample size and number of allelic comparisons (n).

�Harmonic mean of the W and JR estimates ( ~̂NeðT;Strategy3Þ).

�Harmonic mean of the ML estimate and [the harmonic mean of the W and JR estimates] ( ~̂NeðT;Strategy2Þ).

HMean, harmonic mean; S, sample size; LD, linkage disequilibrium (Waples and Do 2008); ABC, Approximate Bayesian Computation (Tallmon et

al. 2008); W, Waples (1989); JR, Jorde and Ryman (2007); ML, pseudo maximum likelihood (Wang 2001). This example uses data for the Miami

blue butterfly from Saarinen et al. (2009).
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combined before combing with the ML estimate. In this

two-step process, the harmonic mean of the two

moment-based estimates is first computed (23.9; Table

A1), and then an unweighted harmonic mean is taken of

this value and the ML estimate (322), producing the

result ~̂NeðT;Strategy2Þ ¼ 44:6:

Strategy 3: The ML estimate seems to be an outlier and

might be affected by small sample sizes, as suggested by

Jorde and Ryman (2007). If the ML estimate is excluded,

the combined temporal estimate is simply ~̂NeðT;Strategy3Þ
¼ 23:9:

In the present case, there does not appear to be a com-

pelling reason for choosing among these options, so we

consider Strategies 2 and 3 in the analyses below.

Combining estimates across methods

If one is primarily interested in estimates of Ne in specific

generations, which might vary considerably over time,

then it could be risky or misleading to try to combine

temporal and single-sample estimates. On the other hand,

if one is interested in an overall estimate of effective size

that is expected to fluctuate only moderately around a

mean value, then combining estimates from the two

methods could be useful. Two factors argue for caution

in doing this in the present example: (i) the temporal

samples span eight generations, while the single-sample

estimators provide information only about Ne at the

beginning and end of this period; (ii) census size var-

ies widely over time in this species (Saarinen et al. 2009),

so it seems unlikely that the temporal and single-sam-

ple methods are estimating the same quasi-constant

quantity. Nevertheless, for the sake of illustration we

consider how information from these two methods could

be combined.

The analogue to Equation A4 for the temporal method,

slightly modified from Equation 4, is

VarTðN̂eÞ �
2N2

e

n0
1þ 2Ne

tS

� �2

: ðA5Þ

To calculate the variances and the respective weights,

we need values for S, t, n, n’, and Ne. For S we used the

harmonic mean for the 2 years (29.7), and for t we used

eight generations. Saarinen et al. (2009) did not provide

the total number of independent alleles (n’) used in the

temporal estimates, but they were based on 11 of the 12

loci considered (the other being monomorphic at site

BHSP in 1 year). Accordingly, we assumed each locus

had five total alleles, which produced n = 880 (from

Equation 1; close to the number reported for 2005) and

n’ = 44 (from Equation 5). Because relative precision of

the LD and temporal methods also depend on Ne

(which is unknown) we considered three values that

span the range of most of the empirical estimates: 25,

50, 100.

Results of these analyses are shown in Table A2, where

we see that (given the S, n, and n’ values in this example)

relative precision for the one- and two-sample methods is

expected to be nearly the same for Ne = 50, with the LD

method having a lower variance for Ne < 50 and the tem-

poral method having a lower variance for larger Ne. As a

result, the single-sample estimate gets higher weight than

the temporal estimate for Ne = 25 (WSS = 0.7; WT = 0.3),

while the temporal estimate receives greater weight for Ne

= 100. Under Strategy 2, the combined temporal estimate

is ~̂NeðTÞ = 44.6 while the combined single-sample estimate

is ~̂NeðSSÞ = 30.7 (Table A1). If, for example, we assume

that true Ne = 25, the overall combined estimate across

methods is calculated as

~̂NeðSSþTÞ ¼
1

0:7=30:7þ 0:3=44:6
¼ 33:9

For Ne = 50 and 100, the corresponding estimates are
~̂NeðSSþTÞ = 36.0 and 38.4, respectively (Table A2). Note

that for larger assumed Ne, the overall estimate moves

closer to the value from the temporal method

( ~̂NeðT;Strategy2Þ = 44.6), reflecting the higher relative weights

Table A2. Combining estimates of Ne across single-sample (SS) and

temporal (T) methods.

Effective population size

25 50 100

Sample size (S) 29.7 29.7 29.7

Number of loci (L) 11 11 11

Alleles/locus (K) 5 5 5

n 880 880 880

n¢ 44 44 44

Generations (t) 8 8 8

Var(N̂eðSSÞ) 18 208 2801

Var(N̂eðTÞ) 42 229 1542

WSS 0.70 0.52 0.36

WT 0.30 0.48 0.64

N̂eðSSþTÞ with ML 33.8 36.0 38.4

N̂eðSSþTÞ without ML 28.3 27.0 25.9

Results are shown for three different effective population sizes.

N̂eðSSþTÞ is the weighted harmonic mean of the overall estimates for

the two methods from Table A1 [N̂e= 30.7 for single-sample method

and 44.6 or 23.9 for the temporal method with or without the Wang

(2001) ML estimate, respectively].

n = number of degrees of freedom for the LD method (Equation 1);

n’ = number of degrees of freedom for the temporal method (Equa-

tion 5); W = relative weights for single-sample and temporal esti-

mates.
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for the temporal estimate. Under Strategy 3, the com-

bined temporal estimate is lower ( ~̂NeðT;Strategy3Þ = 23.9,

Table A1), as is the combined estimate across methods

( ~̂NeðSSþTÞ) = 28.3, 27.0, 25.9 under the assumption that

true Ne is 25, 50, 100 respectively). Again, the overall

combined estimate moves closer to the temporal estimate

for larger population size.

Comments

The above example illustrates some of the basic principles

that should be considered if one is interested in combin-

ing different estimates of effective size. Nomura (2008)

showed that taking even a simple unweighted harmonic

mean of estimates from two one-sample methods can be

effective, but performance should improve through use of

an appropriate weighting scheme. As should be clear from

the above example, deciding on appropriate weights can

be tricky. Here are some additional factors that should be

considered; the last two in particular merit additional

research.

Sample size

Both in calculating N̂e and appropriate weights, one

should use realized sample size—that is, the number of

individuals for which genetic data were actually collected.

If this varies across loci or pairs of loci, the harmonic

mean realized sample size should be used. Saarinen

et al. (2009) only reported the number of individuals

collected so that is what we show in Table A1 and used in

the example, but the harmonic mean realized sample size

is provided as output by some software programs.

Confidence intervals

Although parametric confidence intervals are easy to cal-

culate for both temporal and LD methods, obtaining con-

fidence intervals for combined estimates is not

straightforward. Doing so would require information not

only about relative variances associated with the estimates

but also the degree to which the different estimates pro-

vide independent information about effective size.

Precision and bias

The new temporal estimator proposed by Jorde and

Ryman (2007) is less biased but also less precise than

other temporal methods, and this paper also describes a

tradeoff between bias and precision of the LD method

regarding the criterion for screening out rare alleles. These

observations suggest that it might be profitable to explore

performance of an alternative weighting scheme based on

MSE or RMSE rather than just the variance of N̂e.
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