SCIENTIFIC PAPERS
1.The Use of the Rotating
Disk Electrode for Measuring the Rate of the Fe(II)
Reaction with tert-Butylhydroperoxide and Hydrogen
Peroxide in Hydrochloric Acid and Acrylonitrile Medium. Opekar F.,Beran P.: J.Electroanal.Chem.
32 (1971) 49-56.
2.Preparation of the
Rotating Disk Electrode (in Czech). Beran P.,Opekar
F.: Chem.Listy 65 (1971) 855-857.
3.Preparation of the
Rotating Ring-Disk Electrode (in Czech). Beran P.,Opekar F.: Chem.Listy 68
(1974) 305-309.
4.Electrochemical Oxidation
of K4Os(CN)6 on a Platinum Electrode. Opekar F.,Beran P.: J.Electroanal.Chem.
71 (1976) 120-124.
5.Voltammetric Study of the
Cyanide Complex of Osmium. I - The Reduction of the Cyanide Complex of Os(VI) on
a Platinum RDE. Opekar F.,Beran
P.,Samec Z.: Electrochim.Acta
22 (1977) 243-248.
6.Voltammetric Study of the
Cyanide Complex of Osmium. II - The Behaviour of
Lower Oxidation State Cyanide Complexes of Osmium on a Platinum Electrode.
Opekar F.,Beran P.: Electrochim.Acta 22 (1977) 249-254.
7.Application of the
Kalousek Commutator in Stripping Analysis. Opekar F.,Štulík K.: J.Electroanal.Chem.
85 (1977) 207-212.
8.Programable Device for
Electrochemical Stripping Analysis (in Czech). Opekar F.,Herout M.: Chem.Listy 71
(1977) 867-870.
9.Electrochemical Stripping
Determination of Traces of Copper, Lead, Cadmium and Zinc in Zirconium Metal
and Zirconium Dioxide. Štulík K.,Beran P.,Doležal J.,Opekar F.: Talanta 25
(1978) 363-369.
10.Galvanostatic
Dissolution of Mercury from the Surface of Glassy Carbon into Thiocyanate
Solution. Opekar F.,Holub
K.: Collect.Czech.Chem.Commun. 45 (1980)
169-178.
11.A Kalousek's Switch as
an Accesory of Potentiostatic
Polarograph (in Czech). Opekar F.: Chem.Listy 74
(1980) 284-288.
12.Digital Kit for Chemical
Instrumentation (in Czech). Opekar F.: Chem.Listy 74
(1980) 415-418.
3.Automatic Measurement of
Transition Times in Galvanostatic Stripping Analysis (in Czech). Opekar F.,Herout M.,Kalvoda
R.:Chem.Listy 74 (1980) 542-549.
14.A Device for Analysis
Tin-plated Sheets by the Constant Current Coulometry (in Czech). Opekar F.,Nekvasil J.: Hutnické Listy 35 (1980)
212-215.
15.Automatic Galvanostatic
Stripping Analyser. Opekar F.,Herout M.: Proc.J.Heyrovsky
Memorial Congres on Polarography II,
16.Extension of Working
Capacity of Device for Measurement of Thickness of Galvanic Layers (in Czech).
Herout M.,Opekar F.: Sděl.Technika 28 (1980) 230-231.
17.Flow-through Coulometric
Stripping Analysis and the Determination of Manganese by Cathodic Stripping
Voltammetry. Trojánek A.,Opekar F.: Anal.Chim.Acta
126 (1981) 15-21.
18.Synchronization of
Signal Sampling with Liquid Pulses in Systems with Peristaltic Pumps. Opekar F.,Trojánek A.: Anal.Chim.Acta 127 (1981) 239-243.
19.A Device for Automatic
Conversion of Transient Time to Concentration in Galvanostatic Stripping
Analysis (in Czech). Herout M.,Opekar
F.: Chem.Listy 76 (1982) 645-649.
20.Pneumatoamperometric
Determination of Various Oxidants and Total Dissolved Chlorine. Beran P.,Opekar F.,Bruckenstein
S.: Anal.Chim.Acta 136 (1982) 389-393.
21.The Stripping Voltammetric Determination of Copper with a Rotating
Ring-disk Electrode. Vedral Z.,Beran
P.,Opekar F.,Štulík K.:
Collect. Czech. Chem. Commun. 47 (1982)
1315-1320.
22.A Simple Laboratory
Source of Low Concentration of Hydrogen Cyanide (in Czech). Opekar F.: Chem.Listy 77 (1983) 884-888.
23.Electronic Gas Flowmeter
(in Czech). Opekar.F.: Chem.Listy
78 (1984) 855-858.
24.Determination of Gaseous
Hydrogen Sulfide by Cathodic Stripping Voltammetry after Preconcentration on a
Silver Metallized Porous Membrane Electrode. Opekar F.,Bruckenstein S.: Anal.Chem.
56 (1984) 1206-1209.
25.A Simple Laboratory
Generator for Low Concentration of
26.Pneumatoamperometric
Determination of Cyanide, Sulfide and Cyanide and Sulfide Mixtures. Opekar F.,Bruckenstein S.: Anal.Chim.Acta 169 (1985) 407-412.
27.Pneumatopotentiometric
Determination of Nanogram Amounts of Cyanide. Opekar F.: Anal.Chim.Acta 183 (1986) 293-299.
28.Determination of Subnanogram Amounts of Sulfur Dioxide and Sulfites by Pneumatopotentiometry. Langmaier J.,Opekar F.: Collect.Czech.Chem.Commun.
51 (1986) 2077-2082.
29.The Electrochemical Generation
of Small Amounts of Hydrogen Cyanide. Tocksteinova Z.,Opekar F.: Talanta
33 (1986) 688-690.
30.Amperometric Detection
of Nitrates Using a Flow-through Membrane Detector. Trojánek
A.,Opekar F.: J.Electroanal.Chem. 214 (1986) 125-134.
31.Pneumatoamperometric
Determination of Sulfur Dioxide in Air on ppb Level. Opekar F.,Večeřa Z.,Janák J.: Intern.J.Environ.Anal.Chem. 27 (1986) 123-135.
32.Cyanide Determination in
Stone Destillates (in Czech). Procházka L.,Polakovičová J.,Polakovič J.,Opekar F.: Kvasný Průmysl 32 (1986)
312-316.
33.Spectrophotometric
Determination of
34.Application of a
Metallized Membrane Electrode for the Determination of Gaseous
35.A Wall-jet
Conductometric Detector for Determination of Sulphur Dioxide in Air After
Preconcentration in Water in Aerodispersion Unit.
Opekar F.,Trojánek A.: Anal.Chim.Acta 203 (1987) 1-10.
36.An Electronically
Controlled Three-way Valve for Gases (in Czech). Opekar F.,Křesťan L.: Chem.Listy 82
(1988) 189-190.
37.Determination of Total
Sulphur and Nitrogen in Crude Oil Products by Oxidative Pyrolysis with
Detection Using Metal-plated Membrane Electrode. Langmaier
J.,Polák J.,Opekar
F.: Analyst 113 (1988) 501-503.
38.A Flow-through
Polarographic Detector for Species Forming Products Soluble in Mercury During
Electrochemical Reduction. Trojánek A.,Opekar F.,Holub
K.: J.Electroanal.Chem. 251 (1988) 41-54.
39.Detection of Hydrogen in
Air with a Detector Containing a Nafion Membrane
Metallized on Both Sides. Opekar F.: J.Electroanal.Chem.
260 (1989) 451-455.
40.Amperometric
Determination of Nitrite and Nitrate in Waters and Vegetables (in Czech). Langmaier J.,Opekar
F.: Chem.Listy 84 (1990) 80-87.
41.Continuous Analyzer of
Sulfur Dioxide (in Czech). Večera Z.,Mikuška P.,Janák J.,Opekar F.,Trojánek A.: Chem.Listy 84 (1990) 316-320.
42.A Portable Device for
Removal of Oxygen from Electrochemically Analysed
Solutions (in Czech). Langmaier J.,Opekar F.,Šestáková
43.Thermostat for
Permeation Devices (in Czech). Opekar F.: Chem.Listy 85
(1991) 203-206.
44.Electrochemically
Controlled Generation of Small Amounts of Carbon Monoxide. Opekar F.,Langmaier J.: Talanta 39 (1992) 367-369.
45.An Amperometric
Solid-state Sensor for Nitrogen Dioxide Based on a Solid Polymer Electrolyte.
Opekar F.: Electroanalysis 4 (1992) 133-137.
46.A Solid Polymer
Electrolyte Amperometric Detection Cell for
47.Measurement of Electrode
Potentials in Electrochemical Systems with Solid Polymer Electrolytes Against
Common Reference Electrodes. Opekar F.: Sensors and Actuators B21 (1994)
131-134.
48.Electrochemically
Controlled Generation of Hydrogen for Preparation of Gaseous Mixtures for
Testing of Hydrogen Sensors (in Czech). Opekar F.: Chem.Listy
88 (1994) 258-261.
49.Indicator and Reference
Platinum/Solid Polymer Electrolyte Electrodes for a Simple Solid-State Amperometric Hydrogen Sensor. Opekar F.,Langmaier J.,Samec Z.: J.Electroanal.Chem. 379 (1994) 301-306.
50. Solid-state Hydrogen
Sensor Based on a Solid-polymer Electrolyte. Samec Z.,Opekar F.,Crijns
G.J.E.F.: Electroanalysis 7 (1995) 1054-1058.
51. Electric Resistance in
a Nafion Membrane Exposed to Air after a Step Change
in the Relative Humidity. Opekar F.,Svozil
D.: J.Electroanal Chem. 385 (1995) 269-271.
52. Virtual Apparatus in
Electroanalytical Instrumentation (in Czech). Opekar F.: Chem.Listy
89 (1995) 590-593.
53. A Conductometric
Detector for Capillary Separations. Müller D.,
54. Amperometric
Solid-state NO2 Sensor Based on Plasticized PVC Matrix Containing a
Hydrophobic Electrolyte. Langmaier J., Opekar F.,
Samec Z.: Sensors and Actuators B41 (1997) 1-4.
55. Simple Amperometric Solid-state NO2 Sensor Based on
Plasticized PVC Matrix. Langmaier J., Samec Z.,
Opekar F.: Meeting Abstracts, vol. 97-2, The 1997 Joint Int. Meeting, the Electrochem. Soc. and the Int.Soc.
of Electrochemistry,
56. Simple Amperometric Solid-state NO2 Sensor Based on
Plasticized PVC Matrix. Langmaier J., Samec Z.,
Opekar F.: Electrochemical Society Proceedings,
57. A Simple Technique for
Joining of Capillaries in Capillary Separation Methods.
58. An Amperometric
Detector with a Tubular Electrode Deposited on the Capillary for Capillary
Liquid Chromatogtraphy. Tao Li, Coufal P., Opekar F.,
Štulík K., Wang E.: Anal. Chim.Acta
360 (1998) 53-59.
59. Effect of ac voltage
frequency on the sensitivity of conductometric detection in microseparation
techniques. Opekar F.,
60. Conductometric Detector
for Capillary Electrophoresis Based on Hydrophylic
Strip (in Czech). Tůma P., Opekar F.,
61. A Capillary
Electrophoresis Conductometric Detector Based on Measurement of the
Conductivity of a Plastic Hydrophilic Strip. Tůma P., Opekar F.,
62. An Amperometric
Detector with a Platinum Tubular Electrode for High Performance Liquid
Chromatography. Cvačka J., Opekar F., Barek J., Zima
J.: Electroanalysis 12 (2000) 39-43.
63. Split-flow injector for
capillary zone electrophoresis. Tůma P., Opekar F.,
64. An amperometric
solid-state NO2 sensor with a solid polymer electrolyte and a
reticulated vitreous carbon indicator electrode. Hrnčířová
P., Opekar F., Štulík K.: Sens. Actuators B 69 (2000)
199-204.
65. Solid-state NO2 sensor
with solid polymer electrolyte and reticulated vitreous carbon indicator
electrode. Hrnčířová P., Opekar F.: in Bulletin of
VI. int. symposium Chemistry Forum 2000,
66. A dual
photometric-contactless conductivity detector for capillary electrophoresis.
Chvojka T.,
67. A contactless
conductometric detector with easily exchangeable capillary for capillary
electrophoresis. Tůma P., Opekar F.,
68. Contactless
Conductometric Detection in Separation Methods. Tůma P., Quaiserová
V., Opekar F., Barek J., Zima J.: in Book of Abstracts US-CZ Workshop on
Electrochemical Sensors Prague 2001, June 19-22, 2001, p. 39-40, (ISBN
80-86238-15-6)
69. Electrochemical
generation of nitrogen dioxide for testing of gas sensors (in Czech). Novotný
M., Opekar F. : Chem. Listy
95 (2001) 563-565.
70. Effect of gas humidity
on the potential of pseudoreference Pt/air electrode
in amperometric solid-state gas sensors. Hrnčířová P., Opekar F.: Sens. Actuators B 81 (2002)
329-333.
71. Contactless
Conductivity Detector for Microchip Capillary Electrophoresis. Pumera M., Wang
J., Opekar F., Jelínek I., Feldman J., Löwe H., Hardt S.: Anal. Chem. 74 (2002)
168-197.
72. A chip-based capillary
electrophoresis-contactless conductivity microsystem for fast measurements of
low-explosive ionic components. Wang J., Pumera M., Collins G., Opekar F.,
73. A contactless
conductivity detector for capillary electrophoresis: Effect of the detection
cell geometry on the detector performance. Tůma P., Opekar F., Štulík K.: Electrophoresis 23 (2002) 3718-3724.
74. Dvojdimensionální
detektor pro kapilární elektroforézu nové konstrukce (abstrakt k posteru na 55. sjezdu chemických společností, Košice 2003).
Novotný M., Opekar F.,
75. Potenciometrický
sensor pro fluorovodík s využitím
PMMA polymerních gelových elektrolytů (abstrakt k přednášce na 55. sjezdu chemických společností, Košice 2003). Reiter
J., Vondrák J., Opekar F., Sedlaříková
M., Velická J., Klápště B.:
Chem. Listy 97 (2003) 612.
76. Au/PVC composite - a
new material for solid-state gas sensors. Detection of nitrogen dioxide in the
air. Hoherčáková Z., Opekar F.: Sens. Actuators B97
(2004) 379-386.
77. Determination of
urinary 8-hydroxy-2-deoxyguanosine in obese patients by HPLC with
electrochemical detection. Samcová E., Marhol P., Opekar F., Langmaier
J.: Anal. Chim. Acta 516 (2004)107-110.
78. Solid-state referentní elektroda na bázi PMMA (abstrakt
k posteru na 56. sjezdu chemických společností, Ostrava 2004).Reiter
J., Vondrák J., Opekar F., Velická
J.: Chem. Listy 98 (2004) 614-615.
79. Nový bezkontaktní vodivostní detektor pro průtokové metody (abstrakt k posteru na 56. sjezdu chemických společností, Ostrava 2004). Hoherčáková
Z., Opekar F.: Chem. Listy 98 (2004) 612.
80. Kontinuální
stanovení stopových koncentrací amoniaku ve vzduchu (abstrakt
k přednášce na 56. sjezdu chemických společností, Ostrava 2004). Hrdlička J., Večeřa Z., Mikuška P., Opekar F.: Chem. Listy
98 (2004) 495-496.
81. Improved dual
photometric-contactless conductometric detector for capillary electrophoresis.
Novotný M., Opekar F.,
82. Determination of
Selected Cations in mineral waters and infusion solutions of procaine by
capillary electrophoresis with contactless conductivity detection (in Czech). Šolínová V.,
83. Combined detector for
capillary electrophoresis (in Czech). Novotný M., Opekar F.,
84. The Effects of
Electrode System Geometry on the Properties of Contactless Conductivity
Detectors for Capillary Electrophoresis., Novotný M., Opekar F., Štulík K.: Electroanalysis 17 (2005) 1181-1186.
85. A contactless
conductivity detection cell for flow injection analysis: Determination of total
inorganic carbon. Hoherčáková Z., Opekar F.: Anal.
Chim. Acta 551 (2005) 132-136.
86. Mikrofluidní
analytický systém pro monitorování aminokyselin v biologických tekutinách: příprava předlohy pro odlévání plastových mikročipů (abstrakt k posteru na 57. sjezdu chemických společností, Tatranske Matliare 2005). Hoherčáková Z.,
Jurka V., Tůma P., Opekar F.: Chemzi 1 (2005)
131-132.
87. Thinly Insulated Wire
Cells - A New Device for Sensitive Contactless Conductivity Detection in Flow
Analyses. Hoherčáková Z., Opekar F., Štulík K.: Electroanalysis 17 (2005) 1924-1930.
88. Miniaturized Amperometric Detectors for HPLC and Capillary Zone
Electrophoresis (in Czech). Pecková K., Mocko V., Opekar F., Swain G.M., Zima
J., Barek J.: Chem. Listy 100 (2006) 124-132.
89. Renaissance of HF Impedimetry in Application to CE Detection. Opekar F., Štulík K.: Electroanalysis 18 (2006) 1282-1288.
90. Determination of
1-methylhistidine and 3-methylhistidine by capillary and chip electrophoresis
with contactless conductivity detection. Tůma P., Samcová
E., Opekar F., Jurka V., Štulík K.: Electrophoresis
28 (2007) 2174-2180.
91. Properties of the
Contactless Impedance Detector with Insulated Wire Electrodes Placed Inside the
Flowing Liquid Stream. Nádherná M., Opekar F., Štulík K.: Electroanalysis 19 (2007) 2413-2418.
92. A dual
spectrophotometric/contactless conductometric detector for CE determination of
incompletely separated amino acids. Zikmundová J., Tůma P., Opekar F.: J. Sep.
Sci. 31 (2008) 353-355.
93. Determination of intact
heparin by capillary electrophoresis with contactless conductivity detection in
background electrolytes containing hydrophylic
polymers. Tůma P., Samcová E., Opekar F., Štulík K.: Collect. Czech. Chem. Commun.
73 (2008) 187-200.
94. A Comparison of the
Properties of Contactless Conductivity and Diode-Array Photometric Detectors in
Analyses of Low-Molecular,Biologically
Active Substances by Capillary Electrophoresis in Acetic Acid Solutions. Tůma
P., Opekar F., Samcová E., Štulík
K.: Electroanalysis 20 (2008) 477-484.
95.
Polymer-Ionic Liquid Electrolytes for Electrochemical Gas sensors (abstrakt k posteru na 12. International Conference on Electroanalysis, Prague
2008). Nádherná M., Opekar F., Reiter J.: Chem. Listy 102(S) (2008) s118-s119.
96. HPLC Separation of Cyclen Polycarboxylates Using Contactless Conductivity
Detection (in Czech). Hamplová A., Coufal P., Bosáková
Z., Opekar F., Kubíček V.: Chem. Listy 102 (2008)
194-199.
97. A Contactless Impedance
Probe for Simple and Rapid Determination of the Ratio of Liquids with Different
Permittivities in Binary Mixtures. Opekar F., Štulík K., Fišarová M.:
Electroanalysis 21 (2009) 96-100.
98. Neutral and ionic
reaction mechanisms for the allylation of aldehydes by bipyridine N,N-dioxides. Hrdina R., Opekar F., Roithová
J., Kotora M.: Chem. Commun., 2009, 2314-2316.
99. A thin-layer
contactless conductivity cell for detection in flowing liquids. Míka J., Opekar F., Coufal P., Štulík
K.: Anal. Chim. Acta 650 (2009) 189-194.
100. Some Miniaturized
Impedance Sensors, Their Application to Flow Measurements and Hyphenation with
High-Performance Separations. Opekar F., Tůma P., Štulík
K.: ECS Transactions 19 (2009) 19-34.
101. Utilization of
Integrated AM Receiver Circuit in Contactless Conductivity Detector for
Detection in Solution (in Czech). Opekar F.: Chem. Listy
103 (2009) 839-842.
102. A Simple Contactless
Conductivity Detector Employing a Medium Wave Radio Integrated Circuit for the
Signal Treatment. Opekar F., Štulík K., Fenclová K.: Electroanalysis 22 (2010) 161-167.
103. Some Possibilities and
Limitations of Contactless Impedimetric Determinations of Organic Liquids in
Aqueous Solutions. The Interference from Ionic Compounds. Opekar F., Štulík K., Fišarová M.:
Electroanalysis 22 (2010) 2353-2358.
104. A simple contactless
impedance probe for determination of ethanol in gasoline. Opekar F., Čabala R., Kadlecová T.: Anal. Chim. Acta 694 (2011) 57-60.
105. Ionic liquid–polymer
electrolyte for amperometric solid-state NO2 sensor. Nádherná M., Opekar F., Reiter J.: Electrochim.
Acta 56 (2011) 5650-5655.
106. Application of
Contactless Impedance Detection to Determination of Substances in Gaseous
Phase. Pavlíček V., Opekar F., Štulík K.:
Electroanalysis 23 (2011) 1325-1328.
107. Comparison of the
performance characteristics of two tubular contactless conductivity detectors
with different dimensions and application in conjunction with HPLC. Mark
J.J.P., Coufal P., Opekar F., Matysik F.M.: Anal. Bioanal.
Chem. 401 (2011) 1669-1676.
108. Apparatus for
Electrophoretic Separations in Short Capillary (in Czech). Opekar F.: Chem. Listy 106 (2012) 289-295.
109. A planar, solid-state amperometric sensor for nitrogen dioxide, employing an
ionic liquid electrolyte contained in a polymeric matrix. Nádherná
M., Opekar F., Reiter J., Štulík K.: Sens. Actuators
B161 (2012) 811-817.
110. Rapid determinations
of saccharides in high-energy drinks by short-capillary electrophoresis with
contactless conductivity detection. Vochyánová B.,
Opekar F., Tůma P., Štulík K.: Anal. Bioanal. Chem. 404 (2012) 1549-1554.
111. Very fast
electrophoretic separation on commercial instrument using a combination of two
capillaries with different internal diameters. Tůma P., Opekar F., Samcová E.: Electrophoresis 34 (2013) 552-556.
112. Facilitated
Hydrodynamic Sample Introduction into Separation Capillary in Laboratory
Electrophoretic Devices (in Czech). Kadlecová T., Opekar F., Tůma P.: Chem. Listy 107 (2013) 486-490.
113. The
use of a multichannel capillary for electrophoretic separations of mixtures of
clinically important substances with contactless conductivity and UV
photometric detection. Tůma P., Opekar F., Samcová E,
Štulík K.: Electrophoresis 34 (2013) 2058-2064.
114.
Large-volume sample stacking for in vivo monitoring of trace levels of
gamma-aminobutyric acid, glycine and glutamate in microdialysates
of periaqueductal gray matter by capillary electrophoresis with contactless
conductivity detection. Tůma P., Šustková-Fišerová
M., Opekar F., Pavlíček V., Málková K.: J. Chromatogr.
A 1303 (2013) 94-99.
115. Simultaneous and rapid
determination of caffeine and taurine in energy drinks by MEKC in a short
capillary with dual contactless conductivity/photometry detection. Vochyánová B., Opekar F., Tůma P.: Electrophoresis 35
(2014) 1660–1665.
116. A simple impedance tester for determining the water content in organic solvents. F. Opekar, P. Tůma: Sens. Actuators B 220 (2015) 485-490.
117. Pressure-assisted introduction of urine samples into a short capillary for electrophoretic separation with contactless conductivity and UV spectrometry detection. A. Makrlíková, F. Opekar, P. Tůma: Electrophoresis 36 (2015) 1962-1968.
118. Contactless conductometric determination of methanol and ethanol in samples containing water after electrophoretic desalination. P. Tůma, F. Opekar: Electrophoresis 36 (2015) 1976-1981.
119. Electrokinetic injection of samples into a short electrophoretic
capillary controlled by piezoelectric micropumps. F. Opekar, K. Nesměrák, P. Tůma: Electrophoresis 37 (2016) 595-600.
120.
Dual-channel capillary electrophoresis for simultaneous determination of cations and anions. F. Opekar, P. Tůma: J. Chromatogr.
A 1446 (2016) 158–163.
121. Hydrodynamic
sample injection into short electrophoretic capillary in systems with a flow-gating interface. F.
Opekar, P. Tůma: J. Chromatogr. A 1480 (2017) 93–98.
122. Coaxial flow-gating
interface for capillary electrophoresis. F. Opekar, P. Tůma: J. Sep.Sci. 40 (2017)
3138-3143.
123. Direct sample injection
from a syringe needle into a separation
capillary. F. Opekar, P. Tůma: Anal.
Chim. Acta 1042 (2018) 133-140.
124. An air-assisted
flow-gating interface for capillary electrophoresis. F.
Opekar, P. Tůma: Electrophoresis 40 (2019) 587-590.
125. Rapid determination
of majority cations in yoghurts using on-line connection of capillary
electrophoresis with mini-dialysis. F. Opekar, J. Hraníček,
P. Tůma: Food. Chem. 308 (2020) 125647.
126. Dialysis of one sample drop on-line connected with electrophoresis in short capillary. F. Opekar, P. Tůma: Talanta
219 (2020) 121252.
127. Characterization
of various geometric arrangements of „Air-assisted“ flow gating interfaces
for capillary electrophoresis. F. Opekar, P. Tůma: Electrophoresis
42 (2021)749-755.
128. A new electromembrane
extraction probe for on-line connection with capillary electrophoresis for determination of substances in biological matrices. F. Opekar, P. Tůma: Talanta
254 (2023) 124149.
129. Electromembrane
extraction of anesthetic ketamine on-line coupled to capillary electrophoresis. F. Opekar, P. Tůma: Microchim.
J. 191 (2023) 108886.
130.
A new coaxial flow-through probe for electromembrane
extraction of methadone from clinical samples on-line coupled to capillary electrophoresis F. Opekar, P. Tůma: Anal.
Chim. Acta 1300 (2024) 34246.