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Introduction

The analytical chemical picture of a studied object is provided by a measuring instrument. The results of analytical measurements are required by a wide range of users and thus standardization approaches must be employed to assure their accuracy, precision and low uncertainty in their interpretation.

Any measuring equipment fulfills two tasks:

· it converts the analyte amount into an electrically measurable quantity which is termed the signal,

· it treats the signal electronically and by computing techniques.

The creation of the signal is connected with a physical, chemical, or biological interaction of the analyte within the part of the measuring instrument called the sensor, followed by conversion into a measurable electrical quantity. This section of the measuring instrument  is called the transducer. The subsequent algorithmic treatment of the signal provides rough data that are further refined. The measuring procedure can be described by the scheme in Fig. 1 from which the analyte amount/signal conversion factor is obtained involving all the principal properties of the measuring system.

Here Fig. 1

Measuring system components for an analytical method observing the traceability concept

The analyte amount/signal conversion factor is termed the sensitivity. It follows from the scheme in Fig. 1 that the conversion factor involves many unknown parameters that are specific for the particular measuring instrument and that the sensitivity has no general significance but that it is specific for a given analytical application. The set of the properties of the conversion factor is termed the characteristics of the measuring system. Two models have been formulated for determination of the measuring systems characteristics, namely, the signal model and the response model.

Signal Model

The signal model expresses the relationship between the analyte signal (Si) and the analyte amount (mi). The sensitivity of the measuring instrument is expressed in terms of the product of the construction properties of the measuring instrument (k) and a quantified physical, chemical or biological property of the analyte (ai) that can be used for the measurement. It holds that
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where l is the linearity coefficient.

Response Model

The response model described by Eq. (2) states that the real instantaneous signal of the measuring system (S) consists of the contributions from the analyte (Si), from the sample matrix (Smatrix) and from the instrument itself (Sinstr). Therefore,
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The analyte signal (S) integrated from the beginning of the observation (tstart) to its end (tend) is termed the response R ,
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Eqs. (1) and (2) demonstrate the variability of the measuring instruments from the point of view of the principle (various physico-chemical properties of analyte ai , e.g., thermal conductivity, ionization efficiency, molar absorption coefficient, etc.) and various construction types (construction properties k and Sinstr differ among the instrumentation manufacturers). This variability leads to differences in the measuring selectivity and linearity and to different values of the limit of detection and limit of quantitation.

Signal Handling

The signal is the instantaneous output of the measuring instrument, usually in the form of an electrical quantity. It follows from Eq. (2) that the measured signal is not a simple function of the analyte amount but that it corresponds to the sum of contributions from the analyte, the sample matrix and the instrument itself. The contribution of the instrument, Sinstr, is due to the construction properties of the instrument and is called the baseline or the zero line of the system. The detection mechanism, ambient parameters and the construction materials are subject to noise which is manifested by random increasing and decreasing of the signal. The measured signal of a detector is continuously handled and usually stored in the memory of the measuring instrument as a set of rough data which contain both the signal and the noise and the parameters of the baseline (the signal in the absence of an analyte) and are further treated. A scheme of the signal treatment is shown in Fig. 2.

Here Fig. 2

A scheme of  treatment of the measuring instrument signal; τ is the time constant, FTA is the Fourier transformation analysis and ADP is the adaptive digital filtering.

The signals can be evaluated from the point of view of  whether they are continuous in time or not and whether their amplitude is continuous or not. Various signal types can be distinguished (Fig. 3), analog and digitally treated signals being most common.

Here Fig. 3

Classification of signals according to whether they are continuous in time and amplitude or not.

The detector immediate signal is almost always analog. Its handling in the detector creates either an analog or digital signal that is further treated. Signals with discrete time (numerical or digital signals) are not continuous functions and are termed time series. Signals are treated in order to find their mean values, to sum or multiply them, and to reduce the noise.

The noise oscillating about the baseline is characterized by its frequency and amplitude and, as follows from the statistical concepts, the sum of the positive and negative noise deviations equals zero provided that the time interval of summing is sufficiently long. The noise whose sum is zero over the time interval of observation is called the white noise. The noise whose sum is not zero is termed random noise. The noise that exhibits a time dependence over subsequent observation intervals is called drift (Fig. 4). The noise is only significant within the observation interval (e.g., the elution peak width) and thus it is obvious that the significance of the various noise types changes with a change in the observation interval.

Here Fig. 4

Noise types related to the observation interval. + - white noise (the baseline), 2 – random noise, 3 – drift.

Various forms of the detector signal can be interconverted by electrical components called A/D and D/A converters (A means analog and D digital) that are characterized by the conversion frequency and by the resolution format (expressed in terms of the number of bits).

Analog signals are distorted by a number of time constants τ that are proportional to the detector volume and depend on the way of  electronic treatment of the signal. The signal distortion increases with increasing time constant and may lead to substantial suppression of the immediate signal produced by rapid processes and thus to erroneous interpretation. On the other hand, analog output signals are rarely subject to white noise and random noise is also strongly suppressed. Analog signals are visualized by recorder traces. As the time constants of recorders are rarely smaller than 0.3 s, the recorders are unsuitable for observation of processes shorter than 1 s.

In relation to the response rate of measuring instruments, the response time is defined, corresponding to the time required to attain 90% of the signal final value on a unit change in the analyte amount. The response time consists of the delay time interval (attainment of 10% of the signal final value) and of the increase or decrease interval (the dynamic behaviour between 10 and 90% of the final signal). It should be emphasized that the response of non-physical detectors (i.e., the chemical and biochemical ones) is usually non-symmetrical which is an important drawback of these detectors (Fig. 5).

Here Fig. 5

Response time of a measuring instrument according to ISO 9169.

A digitally treated signal is produced by sampling of an analog signal. The sampling consists of repetitive reading of the input (with a sampling frequency f) over a certain time interval (w) that is characterized  by a mean value. The digital signal is not affected by the time constant and is suitable for observation of even very rapid processes because the sampling frequencies are high (f > 25 kHz). However, the interval for the formation of the signal mean value is very narrow, usually around 40 μs, and thus the digital signal significantly „copies“ the noise of the analog signal.

The large number of the instantaneous signal values (e.g., 25 000 values per second with a 25 kHz converter) cannot be directly used, both because the number is too large and because the values are subject to noise. Therefore, a certain time sequence of instantaneous signals is averaged over a longer time interval and the white noise is suppressed. The signal value thus obtained is characterized by an average value over a time interval that depends on the instrument construction and on the signal handling algorithm and is called „slice“ whose values are stored in the instrument memory.

This signal handling provides rough data that represent a recording of the process observed. These rough data cannot be deconvoluted into the original signals but their time shift compared to the original signal is negligible and does not affect the measuring result. A substantial advantage of the signal handling lies in reduction of the noise and creation of  a set of data that can repeatably be evaluated.

Reduction of noise is a parallel step in the data treatment and is carried out by a number of procedures, e.g., in the order of increasing sofistication,

· inclusion of the time constant (τ),

· use of wavelets, i.e., of a digital, frequency-selective filter of band gate,

· use of the Fourier transformation analysis (FTA),

· use of adaptive digital filtering (ADF).

Appropriate software is available for all the noise reduction procedures and the choice of the approach depends on the aim of the particular analysis. The time constant approach (e.g., lengthening of the time interval tint) leads to suppression of all the noise types, the „wavelet“ method removes noise within a certain frequency range (digital, frequency-selective filters of the band gate <low-pass; high-pass>), FTA carries out frequency analyses over a wide range of frequencies and ADF is a learning system capable of application of the experience obtained to new data sets.

The disturbances of measurement also include sudden and intense changes in the measured signal, called spikes, originating from erroneous functioning of the measuring system. The spikes are not part of the noise because they do not exhibit a frequency structure and can only be removed during follow-up data treatment (post-run calculations). If spikes occur often, the hardware should be checked up.

The creation of a set of rough data ends the period of the „operator passive role“ in the measurement during which the operator could not influence the parameters of the electronic sampling, the A/D converter, the time constant of the measuring system, the slice integration interval, the parameters of the transfer of the rough data into the memory, etc.

The next phase of the signal treatment that affects the instrument calibration is a cummulation of instrument-dependent slices into an interval called bunch whose size is selected by the operator. During the treatment of the rough signal, all the partial signals are integrated over a certain time interval to which corresponds the mean signal value (Fig. 6)

Here Fig. 6

A scheme of the obtaining of the mean signal value in dependence on the bunch length; this example shows the formation of four signal mean values at tint = 5, two values at tint = 10 and a single mean value at tint = 20.

Zero Line

In contrast to a set of rough data giving the magnitude of the overall signal, these newly created data represent signals above a predetermined zero line. The above treatment uses a suitable algorithm based on the finding that a time interval corresponding to a change in the observed process can be described by a limited number of equidistant time sections or points which are representative for the observed process. The length of the time section (bunch) depends on the character of the observed process and of the measuring method and is subject to optimization because a too long section leads to suppression of sudden changes in the observed process, while a too short section permits the data to be affected by noise.

If the time of the observed process changes during the measurement (e.g., the width of chromatographic peaks increases with increasing elution time), then it is necessary to maintain the number of points (bunch) describing the change constant in order to keep comparable conditions for earlier and later peaks. Under this condition, the number of rough data (slice) cummulated into a bunch increases with increasing observation time, but the observation conditions, e.g. the relative change in the signal between the bunches, the noise contribution to the signal, etc., remain independent of the observation time. The data corresponding to bunch are characterized by the signal mean value calculated as the mean of slices contained in the bunch. Therefore,
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when the bunch length is given by
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where n is the number of rough data intervals and tslice is the sampling interval given by the converter frequency.

This modification of the rough data suppresses random noise and permits determination of signal zero line.

The determination of the zero signal is based on the cummulation of the data into bunches, followed by differentiation analysis. It is assumed that the signal change caused by the analyte is larger than a possible random change in the zero line. It then follows from the differentiation analysis of the data that the zero line corresponds to time intervals within which the 1st derivative of the signal lies below a certain predetermined value (the threshold value). The analytical signal is then any value whose 1st derivative exceeds the threshold value.

Here Fig. 7

The effect of the tbunch interval and of the threshold value on the determination of the signal zero value

The length of  tbunch determines the shape of the signal zero line. If this value or the value of the signal derivative (threshold, in some data treatment softwares called the sensitivity) are too low, then the zero line is subject to noise and the analyte signal can be erroneously attributed to noise. On the other hand, if the tbunch or the derivative values are too large, then small changes in the analyte signal can erroneously be included in the zero signal (the baseline).

Fig. 7 depicts the 1st derivative of signal and demonstrates the importance of the tbunch interval on the shape of the signal zero line. For a high frequency f1, the zero line is „not constant“ because the threshold value is often exceeded; on the other hand, for a sufficiently large bunch length corresponding to f3 , the zero line is constant even at a low threshold value.

The area of an integrated signal is determined by the beginning of integration (the instant of exceeding the predetermined threshold), the end of integration (the decrease of the signal 1st derivative below the threshold) and the zero line value between these two points. Because the analyte amount is determined from this area (sometimes from the signal height), the establishment of the zero line is decisive for the error of determination. The error increases with increasing tailing of the signal (increasing τ/σ ratio) and with increasing ratio of the magnitudes of overlapping signals.

Characteristics of Measuring Systems

Observation in analytical chemistry is only based on interpretation of Eqs. (1), (2) and (3). It is thus understandable that evaluation of the variables in these equations has been standardized, especially in EN ISO/IEC 17025 and ISO 11843. The rules given below are in agreement with these standards and are part of the rules of the good laboratory practice.

The necessity to know the properties of the coversion factor between the analyte amount and the analytical signal magnitude follows not only from the requirement of correct interpretation of the results of the measuring system, but also from traceability requirements, i.e., demonstration of the chain of conversion of rough data into the analyte amount: „traceability – property of the result of a measurement or the value of a standard whereby it can be related with a stated uncertainty, to stated references, usually national or international standards (i.e. through an unbroken chain of comparisons), IUPAC (1998), Compendium of analytical nomenclature, definitive rules 1997 („Orange Book“), 3rd ed. Blackwell, Oxford, ISBN 0-86542-684-8 [18.8.2.]“.

Hierarchic interconnection of the characteristics of the measuring system is shown in Fig. 8 and involves the sensitivity from which the selectivity and relative molar response are derived, and the linearity of the measuring system, composed of three parallel criteria, namely, the linearity coefficient, the linear dynamic range and the linearity error.

Here Fig. 8

Characteristics of a measuring system

The sensitivity of a measuring system expresses the output/input transformation function and is the product of the construction properties (k) and those specific for the analyte (ai). A rearrangement of Eq. (1) leads to
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from which it follows that the sensitivity of the measuring system will be constant and independent of the analyte amount mi only when the linearity coefficient is equal to unity, I = 1. If this condition is not satisfied, then the sensitivity is a function of the analyte amount (1/mi(1-1)) and measurement over a wide analyte amount range is erroneous. Because a constant sensitivity value, independent of the analyte amount, is a prerequisite for accurate measurement, the output/input transormation function must be linearized according to Eq. (7)
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The dimension of the sensitivity corresponds to this definition and depends on the dimensions of the output (electrical) signal and of the input signal (analyte amount), e.g., V.g-1, A.ppm-1, Hz.mol-1,  V.s.g-1, etc. The dimension of the analyte amount follows from that of the sensitivity of the analytical determination.

Selectivity Γi expresses the ratio of sensitivities for two analytes in a given measuring system
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It follows from Eq. (8) that the selectivity is not a general property of the measuring system and that it is always relative and dependent on the selection of the standard analyte (st).

The ratio of the magnitudes of analytical properties of the analyte and standard (ai/ast) in Eq. (8), e.g. the thermal conductivity, ionization potential, etc., is called the relative molar response (RMRi) and is used for normalization of the response magnitudes to a unit mass amount.

Here Fig. 9

Principal concepts of  the measuring system linearity

The linearity of the output of a measuring system  is expressed by three parameters that describe the constant value of exponent l of the analyte amount causing signal Si within the range of the analyte amount  < mi,min,  mi,max> , within a predetermined imprecision band (Fig. 9). These parameters are called the linearity coefficient l, the linear dynamic range and the linearity error.

The linearity coefficient is defined as the slope of the log(S) = f[log(mi)] dependence. It holds that
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A measuring system is called linear when its linearity coefficient equals unity, I = 1. Only under this condition is the sensitivity constant and independent of the analyte amount. The linearity coefficient has the most pronounced effect on the detector signal and it should be known for the used measuring system and the range of analyte amounts (for determination of the linearity coefficient see below). Because the linearity coefficient is an exponential term, its effect on the signal values is large. A linearity coefficient greater than unity (e.g., with the flame-photometric detector, FPD) strongly alters the upper part of the peak and changes the value of its sharpness, whereas a linearity coefficient smaller than unity (e.g., with the electron-capture detector, ECD) substantially lower the upper part of the peak. The value of the linearity coefficient especially strongly affects large signals and thus can change the shape of an elution peak (see Fig. 10) and its characteristic quantities, e.g., efficiency, resolution, quantification, etc. For non-unity linearity coefficients the sensitivity depends on the analyte amount (Eq. 6) and thus the determinations are subject to large errors.

Here Fig. 10

Distortion of the measuring system output caused by varying linearity coefficient

The linearity error represents a predetermined acceptable deviation from a constant sensitivity value, with a constant linearity coefficient. The linearity error is selected and it is evident that selection of a larger error causes widening of the specified linear dynamic range but that it does not lead to improved linearization of the detector response. The linearity error should not be chosen greater than ±5% to permit correct interpretation of the measured response.

The linear dynamic range is the range of the analyte amount within which it holds that the detector sensitivity is constant within the predetermined linearity error. Therefore, several linear dynamic ranges may exist of a measuring system, differing in the linearity coefficient. Practical measurements have a problem in distorted shapes of the response curve, as depicted in Fig. 10. With dynamic measurements, e.g., elution profiles, the analyte passes through several linear dynamic ranges and the detector response is a function of several linearity coefficients. Therefore, an evaluation of the instantaneous response (peak (signal) height) of the detector then leads to more accurate representation of the function S = log (mi) than evaluation of the detector integral response.

The linear dynamic range of a measuring system can be obtained from the linearized form of the detector response, i.e., from the logarithmic form of Eq. (1) (Fig. 9), or from Eq. (6), as demonstrated in Fig. 11. The latter procedure does not permit determination of the linearity coefficient and can only indicate its deviations from unity.

Here Fig. 11

An example of evaluation of the measuring sysytem parameters according to Eq. (6); the crosses denote the experimental points, the connecting line expresses the experimental changes in the calculated sensitivity

Determination of the characteristics of a measuring system requires measurement of the detector response over a wide range of the analyte amount. In order to shorten the time required and to suppress errors caused by repeated analyte injection, continuous feeding of the analyte to the detector is advantageous, provided that a defined concentration profile is insured, e.g., by logarithmic dilution or in the form of concentration steps obtained in a step dilutor. Methods employing repeated injections of various analyte amounts are time-consuming, are subject to a great dispersion and should be used only exceptionally.
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