POLAROGRAPHIC AND VOLTAMMETRIC **DETERMINATION OF GENOTOXIC 4-NITROINDAN** USING MERCURY AND SILVER SOLID AMALGAM ELECTRODES

Vlastimil Vyskočil¹, Vendula Burdová¹, Petra Polášková² and Jiří Barek¹

¹ Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8, CZ-128 43, Prague 2, Czech Republic. E-mail: vyskoci1@natur.cuni.cz

² University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Náměstí Čs. legií 565, CZ-532 10, Pardubice, Czech Republic.

Introduction

- Nitrated polycyclic aromatic hydrocarbons (nitro-PAH) including studied 4-nitroindan can be either directly emitted from combustion sources such as diesel or gasoline engines, or formed from their parent PAH by atmospheric OH or NO_3 radical initiated reactions. Since it has been shown that nitro-PAH can be many times more mutagenic and/or carcinogenic than their parent PAH, the analysis of nitro-PAH in emission sources and living environment becomes to be important [1]. Due to the presence of electrochemically easily reducible nitro group on aromatic ring, polarographic and/or voltammetric methods can be successfully used for the determination of trace amounts of 4-nitroindan.
- Analyte:

4-nitroindan, nitro-PAH with non-full aromatic structure and with structural [2] and toxicological [3] properties similar to 1-nitronaphthalene (IARC group 3), has been electrochemically determined at a classical mercury dropping electrode (DME) [4] and at a mercury meniscus modified silver solid amalgam electrode (m-AgSAE) [5] - a non-toxic alternative to traditional mercury electrodes. The stock solution of 4-nitroindan $(c = 1 \times 10^{-3} \text{ mol } \text{L}^{-1})$ was prepared in methanol due to the lower solubility of 4-nitroindan in water. Optimal conditions for the determination of 4-nitroindan have been investigated in buffered aqueous-methanolic solutions; optimal medium: methanol - Britton-Robinson (BR) buffer (1:1). Obtained results have been compared with UV-VIS spectrophotometric determination of 4-nitroindan in methanol.

- Polarographic and voltammetric techniques used for the determination of 4-nitroindan: ٠ - DC tast polarography (DCTP) at DME, - differential pulse polarography (DPP) at DME,
 - DC voltammetry (DCV) at m-AgSAE,
 - differential pulse voltammetry (DPV) at m-AgSAE

4-Nitroindan (A), meniscus modified silver solid amalgam electrode (B), detailed picture of meniscus (C), and scheme of electrode (D).

DC Tast Polarography of 4-Nitroindan at DME

DCT polarograms of 4-nitroindan (c = 1×10⁴ mol L⁴) measured at DME (drop lifetime = 1.0 s, height of the mercury reservoir = 64 cm, mass flow rate of mercury through the capillary = 2.63 mg s³) in methanol – BR buffer (1:1) medium; PH of used BR buffer = 2.0 (1), 4.0 (2), 50 (3), 6.0 (4), 8.0 (5), 10.0 (6) and 12.0 (7); polarization rate = 4 mV s⁻¹. Roman numerals represent individual steps of polarographic reduction of 4-nitroindan at DME. Bold DCT polarogram represents optimal conditions selected for subsequent DCT polarographic

Differential Pulse Polarography of 4-Nitroindan at DME

E, mV DP polarograms of 4-nitroindan (c = 1×10⁴ mol L⁻¹) measured at DME (drop lifetime = 1.0 s, height of the mercury reservoir = 64 cm, mass flow rate of mercury through the capillary = 2.63 mg s⁻¹) in methanol = BK buffer (1:1) medium; PH oused BK buffer = 2.0 (f), 4.0 (2), 6.0 (3), 8.0 (d), 10.0 (5) and 12.0 (6); polarization rate = 4 mV s⁻¹. Roman numerals represent individual steps of polarographic reduction of 4-nitroindan at DME. Bold DP polarograph represents optimal conditions selected for subsequent DP polarographic determination of 4-nitroindan at DME.

E, mV DP polarograms of 4-nitroindan measured at DME (drop lifetime = 1.0 s, height of the mercury reservoir = 64 cm, mass flow rate of mercury through the capillary = 2.63 mg s⁻¹) in methanol = 0 Bk buffer pH 1.20 (1.11) medium; c(4-nitroindan) = 0 (1), 0.2 (2), 0.4 (3), 0.6 (4), 0.8 (5) and 1.0 (6) µmO 1.2¹; polarization rate = 4 mV s⁻¹. The corresponding calibration straight line is in the inset; confidence bands (- -,) are constructed for significance level α = 0.05.

DC Voltammetry of 4-Nitroindan at m-AgSAE

DC voltammograms of 4-nitroindan ($c = 1 \times 10^4$ mol L³) measured at m-AgSAE (disc diameter = 0.52 mm) in methanol – BR buffer (1:1) medium; pH of used BR buffer = 2.0 (1), 4.0 (2), 5.0 (3), 6.0 (4), 8.0 (5), 10.0 (6) and 12.0 (7); polarization rate = 2.0 mV s⁻¹. Roman numerals represent individual steps of voltammetric reduction of 4-nitroindan at m-AgSAE. Bold DC voltammogram represents optimal conditions selected for subsequent DC voltammetric determination of 4-nitroindan at m-AgSAE.

DP Voltammetry of 4-Nitroindan at m-AgSAE

0 -200 -400 -600 -800 -1000 -1200 -1400 E, mV DP voltammograms of 4-nitroindan (c = 1×10⁴ mol L⁴) measured at m-AgSAE (disc diameter = 0.52 mm) in methanol = BR buffer (1:1) medium; pH of used BR buffer = 20 (1), 40 (2), 60 (3), 80 (4), 9.0 (5), 10.0 (6) and 12.0 (7); polarization rate = 20 mV s². Roman numerals represent individual steps of voltammetric reduction of 4-nitroindan at m-AgSAE. Bold DP voltammetric duction of 4-nitroindan at m-AgSAE.

DP voltammograms of 4-nitroindan measured at m-AgSAE (disc diameter = 0.52 mm) in methanol – BR buffer pH 9.0 (1.1) medium: (e-Initroindan) = 0(1), 2.0 (2), 4.0 (3), 6.0 (4), 8.0 (5) and 10.0 (6) µmol 1.⁺; polarization nate = 20 mV s⁺; regeneration potentials $E_{trog} = -300$ mV. The corresponding calibration straight line is in the inset; confidence bands (--) are constructed for significance level a = 0.05.

Concentration Dependences of 4-Nitroindan Determination

Technique and Electrode	Concentration Range	Slope ^a	Intercept ^{a,b}	Correlation	Repeatability	L _Q °
[Medium / Regeneration Potentials]	[mol L ⁻¹]	[mA mol ⁻¹ L]	[nA]	Coefficient	(n = 20) [%]	[mol L ⁻¹]
DCTP at DME [methanol - BR buffer pH 12.0 (1:1)]	(2 - 10) × 10 ⁻⁵	-6.50 ± 0.58	21.7 ± 38.6	-0.9988	d	
	(2 - 10) × 10 ⁻⁶	-4.29 ± 0.36	-1.2 ± 2.4	-0.9990	2.96 °	6.5×10^{-7}
DPP at DME [methanol - BR buffer pH 12.0 (1:1)]	(2 - 10) × 10 ⁻⁵	-6.54 ± 0.59	5.3 ± 39.1	-0.9988	d	
	(2 - 10) × 10 ⁻⁶	-4.45 ± 0.66	-2.9 ± 4.4	-0.9968	d	
	(2 - 10) × 10 ⁻⁷	-2.95 ± 0.46	-0.3 ± 0.3	-0.9964	3.89 °	1.0×10^{-7}
DCV at m-AgSAE [methanol – BR buffer pH 5.0 (1:1)] [E _{1,reg} = -200 mV, E _{2,reg} = -1100 mV]	(2 - 10) × 10 ⁻⁵	-2.71 ± 0.19	6.1 ± 12.6	-0.9993	0.95 f	
	(2 - 10) × 10 ⁻⁶	-2.44 ± 0.19	0.3 ± 1.3	-0.9991	d	
	(1 - 10) × 10 ⁻⁷	-1.65 ± 0.18	-0.8 ± 0.1	-0.9970	5.36 °	1.2×10^{-7}
DPV at m-AgSAE [methanol – BR buffer pH 9.0 (1:1)] [E _{1,reg} = -300 mV, E _{2,reg} = -1300 mV]	(2 - 10) × 10 ⁻⁵	-2.71 ± 0.46	14.6 ± 30.6	-0.9957	0.94 ^f	
	(2 - 10) × 10 ⁻⁶	-2.31 ± 0.12	0.6 ± 0.8	-0.9996	d	
	(1 - 10) × 10 ⁻⁷	-1.22 ± 0.23	0.0 ± 0.1	-0.9912	4.90 °	$1.4\times10^{.7}$
UV-VIS spectrophotometry [methanol, $\lambda_{max} = 267 \text{ nm}$]	(2 - 10) × 10 ⁻⁵	7.47 ± 0.46 ^g	-10.7 \pm 30.1 $^{\rm h}$	0.9995	d	
	(2 - 10) × 10 ⁻⁶	6.65 ± 4.33 g	3.6 ± 28.7 h	0.9425	1.21 °	$3.7 \times 10^{.7}$

* - intervals represent lower and upper confidence limits, ^b - intercepts which are not statistically significantly different from zero value (allowing use of the method of standard addition) are in bold, ^c - limit of quantification (100, $\alpha = 0.05$, α^{-1} erepetability was not measured, ^c - repetability for lowest equidistant measurable concentration of 4-nitroindan ($c = 2×10^{7}$ mol L²), ^t - repetability for highest measurable concentration of 4-nitroindan ($c = 4×10^{4}$ mol L²), ^g - the unit of slope is mAU mol⁻¹ L, ^b - the unit of intercept is mAU

Conclusion

- Following methods of determination of 4-nitroindan have been developed:

- DCTP at DME in concentration range 0.2 100 µmol L⁻¹ in methanol BR buffer pH 12.0 (1:1),
 DPP at DME in concentration range 0.2 100 µmol L⁻¹ in methanol BR buffer pH 12.0 (1:1),
 DCV at m-AgSAE in concentration range 0.1 100 µmol L⁻¹ in methanol BR buffer pH 5.0 (1:1),
 DPV at m-AgSAE in concentration range 0.1 100 µmol L⁻¹ in methanol BR buffer pH 9.0 (1:1).
- The limits of quantification (L_Q) of newly developed polarographic and voltammetric methods of 4-nitroindan determination at DME and m-AgSAE are comparable or lower than the L_0 's reached by UV-VIS spectrophotometry. The sensitivity of newly developed polarographic and/or voltammetric methods of determination of 4-nitroindan can be further increased by using of analyte preconcentration, e.g. solid phase extraction.

Acknowledgement

This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic (projects LC 06035, MSM 0021620857 and RP 14/63).

References

- B. Zielinska, S. Samy, Anal. Bioanal. Chem. 2006, 386, 883.
 J.F. Fuller, E.J. Valente, J. Chem. Crystallogr. 1996, 26, 815.
 J. Jacob, W. Karcher, J.J. Belliardo, R. Drumler, A. Boenke, Fresenius. J. Anal. Chem. 1991, 340, 755.
- V. Vyskocil, I. Barek, Crit. Rev. Anal. Chem. 2009, 39, 173
- 5. B. Yosypchuk, J. Barek, Crit. Rev. Anal. Chem. 2009, 39, 189.